OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 34, Iss. 18 — Jun. 20, 1995
  • pp: 3352–3357

Wigner distribution function for Gaussian–Schell beams in complex matrix optical systems

D. Dragoman  »View Author Affiliations


Applied Optics, Vol. 34, Issue 18, pp. 3352-3357 (1995)
http://dx.doi.org/10.1364/AO.34.003352


View Full Text Article

Enhanced HTML    Acrobat PDF (171 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

For Gaussian–Schell beam propagation through complex matrix optical systems, it is shown that, in some particular cases, an A C D transformation law for the Wigner distribution function holds. For these situations, invariant quantities for the Gaussian–Schell beam propagation can be defined analogous to the real matrix case.

© 1995 Optical Society of America

History
Original Manuscript: August 8, 1994
Revised Manuscript: December 7, 1994
Published: June 20, 1995

Citation
D. Dragoman, "Wigner distribution function for Gaussian–Schell beams in complex matrix optical systems," Appl. Opt. 34, 3352-3357 (1995)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-34-18-3352


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Wolf, E. Collett, “Partially coherent sources which produce the same far-field intensity distribution as a laser,” Opt. Commun. 25, 293–296 (1978). [CrossRef]
  2. F. Gori, “Collett–Wolf sources and multimode lasers,” Opt. Commun. 34, 301–305 (1980). [CrossRef]
  3. A. Starikov, E. Wolf, “Coherent-mode representation of Gaussian Schell-model sources and of their radiation fields,” J. Opt. Soc. Am. 72, 923–928 (1982). [CrossRef]
  4. A. T. Friberg, R. J. Sudol, “Propagation parameters of Gaussian Schell-model beams,” Opt. Commun. 41, 383–387 (1982). [CrossRef]
  5. A. T. Friberg, R. J. Sudol, “The spatial coherence properties of Gaussian Schell-model beams,” Opt. Acta 30, 1075–1097 (1983). [CrossRef]
  6. F. Gori, “Mode propagation of the field generated by Collett–Wolf Schell-model sources,” Opt. Commun. 46, 149–154 (1983). [CrossRef]
  7. R. Simon, E. C. G. Sudarshan, N. Mukunda, “Generalized rays in first-order optics: transformation properties of Gaussian Schell-model fields,” Phys. Rev. A 29, 3273–3279 (1984). [CrossRef]
  8. A. T. Friberg, J. Turunen, “Imaging of Gaussian–Schell-model sources,” J. Opt. Soc. Am. A 5, 713–720 (1988). [CrossRef]
  9. M. Kauderer, “First-order sources in first-order systems: second-order correlations,” Appl. Opt. 30, 1025–1035 (1991); M. Kauderer, Appl. Opt., 30, 3788(E) (1991). [CrossRef] [PubMed]
  10. M. Kauderer, “Gaussian–Schell model sources in one-dimensional first-order systems with loss or gain,” Appl. Opt. 32, 999–1017 (1993). [CrossRef] [PubMed]
  11. E. Wigner, “On the quantum correction for thermodynamic equilibrium,” Phys. Rev. 40, 749–759 (1932). [CrossRef]
  12. T. A. C. M. Claasen, W. F. G. Meklenbrauker, “The Wigner distribution—a tool for time-frequency signal analysis. Part I: Continuous-time signals,” Philips J. Res. 35, 217–250 (1980); “Part II: Discrete-time signals,” 276–300; “Part III: Relation with other time-frequency signal transformations,” 372–389.
  13. M. J. Bastiaans, “The Wigner distribution function applied to optical signals and systems,” Opt. Commun. 25, 26–30 (1978). [CrossRef]
  14. M. J. Bastiaans, “Wigner distribution function and its applications to first-order optics,” J. Opt. Soc. Am. 69, 1710–1716 (1979). [CrossRef]
  15. M. J. Bastiaans, “Propagation law for the second-order moments of the Wigner distribution function in first-order optical systems,” Optik 82, 173–181 (1989).
  16. M. J. Bastiaans, “Second-order moments of the Wigner distribution function in first-order optical systems,” Optik 88, 163–168 (1991).
  17. D. Onciul, “Invariance properties of general astigmatic beams through first-order optical systems,” J. Opt. Soc. Am. A 10, 295–298 (1993). [CrossRef]
  18. D. Dragoman, “Higher-order moments of the Wigner distribution function in first-order optical systems,” J. Opt. Soc. Am. A 11, 2643–2646 (1994). [CrossRef]
  19. M. J. Bastiaans, “The Wigner distribution function of partially coherent light,” Opt. Acta 28, 1215–1224 (1981). [CrossRef]
  20. M. J. Bastiaans, “Applications of the Wigner distribution function to partially coherent light,” J. Opt. Soc. Am. A 3, 1227–1237 (1986). [CrossRef]
  21. V. Guillemin, S. Sternberg, Symplectic Techniques in Physics, (Cambridge U. Press, Cambridge, 1984).
  22. M. Nazarathy, J. Shamir, First-order optics: operator representation for systems with loss or gain,” J. Opt. Soc. Am. 72, 1398–1406 (1982). [CrossRef]
  23. H. T. Yura, S. G. Hanson, “Optical beam wave propagation through complex optical systems,” J. Opt. Soc. Am. A 4, 1931–1948 (1987). [CrossRef]
  24. D. Dragoman, “Wigner distribution function for a complex matrix optical system,” Optik (to be published).
  25. H. Kogelnik, “Imaging of optical modes-resonators with internal lenses,” Bell Syst. Tech. J. 44, 455–494 (1965).
  26. S. Barnett, Matrices: Methods and Applications (Clarendon, Oxford, 1990).
  27. J. Serna, R. Martinez-Herrero, P. M. Mejias, “Parametric characterization of general partially coherent beams propagation through ABCD optical systems,” J. Opt. Soc. Am. A 8, 1094–1098 (1991). [CrossRef]
  28. J. A. Arnaud, Beam and Fiber Optics (Academic, New York, 1976), p. 70.
  29. J. Serna, P. M Mejias, R. Martinez-Herrero, “Beam quality in monomode diode lasers,” Opt. Quantum Electron. 24, 881–887 (1992). [CrossRef]
  30. R. Martinez-Herrero, P. M. Mejias, J. L H. Neira, M. Sanchez, “Propagation invariance of laser beam parameters through optical systems,” in Eighth International Symposium on Gas Flow and Chemical Lasers, C. Domingo, J. M. Orza, eds., Proc. Soc. Photo-Opt. Instrum. Eng. 1397, 627–630 (1991).
  31. G. Piquero, P. M. Mejias, R. Martinez-Herrero, “Sharpness changes of Gaussian beams induced by spherically aberrated lenses,” Opt. Commun. 107, 179–183 (1994). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited