OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 34, Iss. 18 — Jun. 20, 1995
  • pp: 3392–3397

Second-harmonic generation in optically trapped nonlinear particles with pulsed lasers

L. Malmqvist and H. M. Hertz  »View Author Affiliations

Applied Optics, Vol. 34, Issue 18, pp. 3392-3397 (1995)

View Full Text Article

Enhanced HTML    Acrobat PDF (117 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Pulsed lasers are used for simultaneous single-beam three-dimensional optical trapping of and second-harmonic generation in 50–100-nm nonlinear particles. The emission power of the frequency-doubled light, the trapping stability, and the particle degradation are investigated for KTP and LiNbO3 particles trapped by 25-kHz-repetition-rate Q-switched Nd:YAG and 76-MHz mode-locked Ti:sapphire lasers. Typically 1 pW–10 nW of frequency-doubled light is detected from stably trapped particles. The particles may be used as probes for nonintrusively scanned near-field optical microscopy.

© 1995 Optical Society of America

Original Manuscript: May 17, 1994
Revised Manuscript: December 13, 1994
Published: June 20, 1995

L. Malmqvist and H. M. Hertz, "Second-harmonic generation in optically trapped nonlinear particles with pulsed lasers," Appl. Opt. 34, 3392-3397 (1995)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, S. Chu, “Observation of single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986). [CrossRef] [PubMed]
  2. S. Sato, H. Inaba, “Observation of second harmonic generation from optically trapped microscopic LiNbO3 particle using Nd:YAG laser,” Electron. Lett. 28, 286–287 (1992). [CrossRef]
  3. L. Malmqvist, H. M. Hertz, “Trapped particle optical microscopy,” Opt. Commun. 94, 19–24 (1992). [CrossRef]
  4. L. Malmqvist, H. M. Hertz, “Two-color trapped particle optical microscopy,” Opt. Lett. 19, 853–855 (1994). [CrossRef] [PubMed]
  5. A. Ashkin, J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235, 1517–1520 (1987). [CrossRef] [PubMed]
  6. W. H. Wright, G. J. Sonek, Y. Tadir, M. W. Bems, “Laser trapping in cell biology,” IEEE J. Quantum Electron. 26, 2148–2157 (1990). [CrossRef]
  7. A. Ashkin, K. Schuütze, J. M. Dziedzic, U. Euteneuer, M. Schliwa, “Force generation of organelle transport measured in vivo by an infrared laser trap,” Nature 348, 346–348 (1990). [CrossRef] [PubMed]
  8. K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura, H. Masuhara, “Laser-scanning micromanipulation and spatial patterning of fine particles,” Jpn. J. Appl. Phys. 30, L907–L909 (1991). [CrossRef]
  9. K. Visscher, G. J. Brakenhoff, J. J. Krol, “Micromanipulation by ‘multiple’ optical traps created by a single fast scanning trap integrated with the bilateral confocal scanning laser microscope,” Cytometry 14, 105–114 (1993). [CrossRef] [PubMed]
  10. S. M. Block, “Optical tweezers: a new tool for biophysics,” in Noninvasive Techniques in Cell Biology, J. K. Foskett, S. Grinstein, eds. (Wiley, New York, 1990), pp. 375–402.
  11. H. Misawa, M. Koshioka, K. Sasaki, N. Kitamura, H. Masuhara, “Three-dimensional optical trapping and laser ablation of a single polymer latex particle in water,” J. Appl. Phys. 70, 3829–3836 (1991). [CrossRef]
  12. M. Kerker, The Scattering of Light (Academic, New York, 1969), Chap. 3.
  13. W. Heller, “Theoretical investigations on the light scattering of spheres. XVI. Range of practical validity of the Rayleigh theory,” J. Chem. Phys. 42, 1609–1615 (1965). [CrossRef]
  14. S. Chandrasekhar, “Stochastic problems in physics and astronomy,” Rev. Mod. Phys. 15, 1–89 (1943). [CrossRef]
  15. R. W. Boyd, Nonlinear Optics (Academic, San Diego, Calif., 1992), pp. 39 and 432.
  16. H. Vanherzeele, J. D. Bierlein, “Magnitude of the nonlinear-optical coefficients of KTiOPO4.” Opt. Lett. 17, 982–984 (1992). [CrossRef] [PubMed]
  17. P. Lorrain, D. Corson, Electromagnetic Fields and Waves, 2nd ed. (Freeman, New York, 1970), p. 605.
  18. S. Hell, Centre for Biotechnology, P.O. Box 123, Turku, Finland FIN-20521 (personal communication, 1994).
  19. W. Seiffert, Department of Physics, Lund Institute of Technology, P.O. Box 118, Lund, Sweden S-22100 (personal communication, 1994).
  20. J. K. Trautman, E. Betzig, J. S. Wiener, D. J. DiGiovanni, T. D. Harris, F. Hellman, E. M. Gyorgy, “Image contrast in near-field optics,” J. Appl. Phys. 71, 4659–4663 (1992). [CrossRef]
  21. S. Andersson-Engels, I. Rokahr, J. Carlsson, “Time- and wavelength-resolved spectroscopy in two-photon excited fluorescence microscopy,” J. Microsc. (Oxford) 176195–203 (1994); I. Rokahr, Department of Physics, Lund Institute of Technology, P.O. Box 118, Lund, Sweden S-22100 (personal communication, 1994). [CrossRef]
  22. D. S. Chemla, J. Zyss, eds., Nonlinear Optical Properties of Organic Molecules and Crystals (Academic, New York, 1987).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited