OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 34, Iss. 18 — Jun. 20, 1995
  • pp: 3489–3501

Sizing of colloidal particles with light scattering: corrections for beginning multiple scattering

Heimo Schnablegger and Otto Glatter  »View Author Affiliations


Applied Optics, Vol. 34, Issue 18, pp. 3489-3501 (1995)
http://dx.doi.org/10.1364/AO.34.003489


View Full Text Article

Enhanced HTML    Acrobat PDF (242 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Static light scattering is widely used for sizing of particles with radii in the range of 50 nm up to several micrometers. These experiments usually require very low particle concentrations (<10−4) for prevention of multiple scattering. As a consequence, nonabsorbing samples that are suited for light-scattering investigations must be transparent so that the transmittance of the incident light is typically above 95%. Investigations of less translucent samples require corrective terms for the beginning of multiple scattering to retrieve the particle-size distribution successfully. We applied a computationally convenient first-order approximation for the multiple-scattering problem that has Hartel’s approach in its first steps. When incorporated into our inversion technique, this approximation functions well for samples with transmittances above 30%. We present examples of applications to experimental data.

© 1995 Optical Society of America

History
Original Manuscript: January 3, 1994
Revised Manuscript: January 3, 1995
Published: June 20, 1995

Citation
Heimo Schnablegger and Otto Glatter, "Sizing of colloidal particles with light scattering: corrections for beginning multiple scattering," Appl. Opt. 34, 3489-3501 (1995)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-34-18-3489


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. Lorenz, Oevres Scientifiques de L. Lorenz, Revues et Annotes par H. Valentiner (Librairie Lehman et Stage, Copenhague, 1898).
  2. G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloider Metalllösungen,” Ann. Phys. 25, 377–445 (1908). [CrossRef]
  3. H. C. van de Hulst, Light Scattering of Small Particles (Wiley, New York, 1957).
  4. M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic, New York, 1969).
  5. C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
  6. H. Schnablegger, O. Glatter, “Optical sizing of small colloidal particles: an optimized regularization technique,” Appl. Opt. 30, 4889–4896 (1991). [CrossRef] [PubMed]
  7. H. Schnablegger, O. Glatter, “Simultaneous determination of size distribution and refractive index of colloidal particles from static light scattering experiments,” J. Colloid Interface Sci. 158, 228–242 (1993). [CrossRef]
  8. O. Glatter, “A new method for the evaluation of small-angle scattering data,” J. Appl. Crystallogr. 10, 415–421 (1977). [CrossRef]
  9. W. Hartel, “Zur Theorie der Lichtstreuung durch trübe Schichten, besonders Trübgläser,” Licht 10, 141–143, 165, 190–191, 214–215, 232–234 (1940).
  10. S. Chandrasekhar, Radiative Transfer (Dover, New York, 1960).
  11. H. C. van de Hulst, Multiple Light Scattering (Academic, New York, 1980).
  12. C. M. Chu, S. W. Churchill, “Representation of the angular distribution of radiation scattered by a spherical particle,” J. Opt. Soc. Am. 45, 958–962 (1955). [CrossRef]
  13. G. C. Clark, C. M. Chu, S. W. Churchill, “Angular distribution coefficients for radiation scattered by a spherical particle,” J. Opt. Soc. Am. 47, 81–84 (1957). [CrossRef]
  14. H. H. Theissing, “Macrodistribution of light scattered by dispersions of spherical dielectric particles,” J. Opt. Soc. Am. 40, 232–243 (1950). [CrossRef]
  15. H. G. Hecht, “The a priori calculation of the diffuse reflectance of a turbid medium,” Opt. Acta 30, 659–668 (1983). [CrossRef]
  16. T. N. E. Greville, Theory and Application of Spline Functions (Academic, New York, 1969).
  17. J. Schelten, F. Hossfeld, “Application of spline functions to the correction of resolution errors in small-angle scattering,” J. Appl. Crystallogr. 4, 210–223 (1971). [CrossRef]
  18. C. de Boor, A Practical Guide to Splines (Springer-Verlag, New York, 1978). [CrossRef]
  19. Ph. R. Bevington, Data Reduction and Error Analysis for the Physical Sciences (McGraw-Hill, New York, 1969).
  20. O. Glatter, J. Sieberer, H. Schnablegger, “A comparative study on different scattering techniques and data evaluation methods for sizing of colloidal systems using light scattering,” Part. Part. Syst. Charact. 8, 274–281 (1991). [CrossRef]
  21. C. L. Lawson, R. J. Hanson, Solving Least Squares Problems (Prentice-Hall, Englewood Cliffs, N.J., 1974).
  22. S. W. Provencher, “A constrained regularization method for inverting data represented by linear algebraic or integral equation,” Comput. Phys. Commun. 27, 213–227 (1982). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited