OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 34, Iss. 18 — Jun. 20, 1995
  • pp: 3535–3545

Electrostatics analysis of radiative absorption by sphere clusters in the Rayleigh limit: application to soot particles

Daniel W. Mackowski  »View Author Affiliations


Applied Optics, Vol. 34, Issue 18, pp. 3535-3545 (1995)
http://dx.doi.org/10.1364/AO.34.003535


View Full Text Article

Enhanced HTML    Acrobat PDF (470 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An analysis of radiative absorption and scattering by clusters of spheres in the Rayleigh limit is developed with an electrostatics analysis. This approach assumes that the largest dimension of the cluster is significantly smaller than the wavelength of the radiation. The electric field that is incident upon and scattered by the cluster can then be represented by the gradient of a potential that in turn satisfies Laplace’s equation. An analytical solution for the potential that exactly satisfies the boundary conditions at the surfaces of the spheres is obtained with a coupled spherical harmonics method. The components of the polarizability tensor and the absorption, scattering, and depolarization factors are obtained from the solution. Calculations are performed on fractallike clusters of spheres, with refractive-index values that are characteristic of carbonaceous soot in the visible and the IR wavelengths. Results indicate that the absorption cross sections of fractal soot clusters can be significantly larger in the mid-IR wavelengths than what is predicted for Rayleigh-limit spheres that have the same total volume. The absorption cross section (relative to a sphere of the same volume) is dependent on the number of spheres in the aggregate for aggregates with up to approximately 100 primary spheres, and for larger aggregates the relative absorption becomes constant. The predicted spectral variation of soot absorption in the visible and the mid-IR wavelengths is shown to agree well with experimental measurements.

© 1995 Optical Society of America

History
Original Manuscript: June 20, 1994
Revised Manuscript: December 16, 1994
Published: June 20, 1995

Citation
Daniel W. Mackowski, "Electrostatics analysis of radiative absorption by sphere clusters in the Rayleigh limit: application to soot particles," Appl. Opt. 34, 3535-3545 (1995)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-34-18-3535

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you are accessing the full text through a member bundle, please use the Enhanced HTML link to gain access to the citation lists and other restricted features. Note that accessing both the PDF and HTML versions of an article will count as only one download against your account.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you are accessing the full text through a member bundle, please use the Enhanced HTML link to gain access to the citation lists and other restricted features. Note that accessing both the PDF and HTML versions of an article will count as only one download against your account.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you wish to use one of your free member downloads to view the figures, click "Enhanced HTML" above and access the figures from the article itself or from the navigation tab.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you are accessing the full text through a member bundle, please use the Enhanced HTML link to gain access to the citation lists and other restricted features. Note that accessing both the PDF and HTML versions of an article will count as only one download against your account.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited