OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 34, Iss. 2 — Jan. 10, 1995
  • pp: 256–266

Polarization-selective computer-generated holograms: design, fabrication, and applications

Fang Xu, Joseph E. Ford, and Yeshayahu Fainman  »View Author Affiliations

Applied Optics, Vol. 34, Issue 2, pp. 256-266 (1995)

View Full Text Article

Enhanced HTML    Acrobat PDF (609 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We constructed polarization-selective computer-generated holograms that apply an independent phase profile during readout by horizontal and vertical light polarizations. These elements are composed of two surface-relief-etched birefringent substrates joined face to face. We describe the design methodology for arbitrary birefringent substrate and gap materials. We show how these holograms are fabricated with standard microelectronics technology and discuss the effects of etching and alignment errors on performance. We demonstrated a diffraction efficiency of 60% with a polarization contrast ratio of >100:1 using a multilevel phase hologram made from two birefringent lithium niobate substrates. We also showed that a single-layer SiO2 thin-film antireflection coating on all surfaces can reduce reflections from the high-index substrates without significant effect on hologram performance. We also consider some possible applications of this technology and demonstrate experimentally a dual focal-length lens and a self-interconnecting binary 2 × 2 polarization switch.

© 1995 Optical Society of America

Original Manuscript: February 18, 1994
Revised Manuscript: July 25, 1994
Published: January 10, 1995

Fang Xu, Joseph E. Ford, and Yeshayahu Fainman, "Polarization-selective computer-generated holograms: design, fabrication, and applications," Appl. Opt. 34, 256-266 (1995)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Todorov, L. Nikolova, K. Stoyanova, N. Tomova, “Polarization holography. III. Some applications of polarization holographic recording,” Appl. Opt. 24, 785–788 (1985). [CrossRef] [PubMed]
  2. Q. W. Song, M. C. Lee, P. J. Talbot, “Polarization sensitivity of birefringent photorefractive holograms and its applications to binary switching,” Appl. Opt. 31, 6240–6246 (1992). [CrossRef] [PubMed]
  3. R. Kostuk, M. Kato, Y. T. Huang, “Polarization properties of substrate-mode holographic interconnects,” Appl. Opt. 29, 3848–3854 (1990). [CrossRef] [PubMed]
  4. K. Yokomori, “Dielectric surface-relief gratings with high diffraction efficiency,” Appl. Opt. 23, 2303–2310 (1984). [CrossRef] [PubMed]
  5. H. Haidner, P. Kipfer, J. Sheridan, J. Schwider, N. Streibl, J. Lindolf, M. Collischon, A. Lang, J. Hutfless, “Polarizing reflection grating beams splitter for the 10.6-μ wavelength,” Opt. Eng. 32, 1860–1865 (1993). [CrossRef]
  6. A. Ohba, Y. Kimura, S. Sugama, Y. Urino, Y. Ono, “Holographic optical element with analyzer function for magneto-optical disk head,” Jpn. J. Appl. Phys. Suppl. 28, 359–361 (1989).
  7. J. Hoßfeld, D. Columbus, H. Sprave, T. Tschudi, W. Dultz, “Polarizing computer-generated holograms,” Opt. Eng. 32, 1835–1838 (1993). [CrossRef]
  8. G. S. Swanson, “Binary optics technology: the theory and design of multilevel diffractive optical elements,” MIT Lincoln Laboratory Tech. Rep. 854, (MIT, Cambridge, Mass., 1989).
  9. M. Born, E. Wolf, Principle of Optics, 6th ed. (Pergamon, New York, 1989), pp. 705–708.
  10. P. Kipfer, M. Collischon, H. Haidner, J. T. Sheridan, J. Schwider, N. Streibl, J. Lindolf, “Infrared optical components based on a microrelief structure,” Opt. Eng. 33, 79–84 (1994). [CrossRef]
  11. Lithium niobate optical crystal data sheet (Crystal Technology, Inc., Palo Alto, Calif., 1992).
  12. C. Pitt, M. Fraser, N. Polozkov, L. Ivleva, “Growth and materials processing of LiNbO3,” in Properties of Lithium Niobate, EMIS Datareview Series No. 5 (INSPEC, Institution of Electrical Engineers, London, 1989), pp. 205–236.
  13. R. E. Chapman, “Argon and reactive ion beam etching for SAW devices,” Vacuum 34, 417–424 (1984). [CrossRef]
  14. H. Dammann, “Blazed synthetic phase-only holograms,” Optik 31, 95–104 (1970).
  15. U. Krackhardt, N. Streibl, J. Schwider, “Fabrication errors of computer generated multilevel phase holograms,” Optik 95, 137–146 (1994).
  16. T. Gaylord, M. Moharam, “Analysis and applications of optical diffraction by gratings,” IEEE Proc. 73, 894–937 (1985). [CrossRef]
  17. J. Cox, T. Werner, J. Lee, S. Nelson, B. Fritz, J. Bergstrom, “Diffraction efficiency of binary optical elements,” in Computer and Optically Formed Holographic Optics, J. Cindrich, S. H. Lee, eds., Proc. Soc. Photo-Opt. Instrum. Eng. 1211, 116–124 (1990).
  18. M. W. Farn, J. W. Goodman, “Effect of VLSI fabrication errors on kinoform efficiency,” in Computer and Optically Formed Holographic Optics, J. Cindrich, S. H. Lee, eds., Proc. Soc. Photo-Opt. Instrum. Eng. 1211, 125–136 (1990).
  19. A. Ohba, Y. Kimura, S. Sugama, R. Katayama, Y. Ono, “Reflection polarizing holographic optical element for compact magneto-optical disk heads,” Appl. Opt. 29, 5131–5135 (1990). [CrossRef] [PubMed]
  20. C. J. Kirkby, M. J. Goodwin, A. D. Parsons, “PLZT/silicon hybridized spatial light modulator array: design, fabrication, and characterization,” Intl. J. Optoelectron. 5, 169–178 (1990).
  21. L. K. Cotter, T. J. Drabik, R. J. Dillon, M. A. Handschy, “Ferroelectric-liquid-crystal/silicon-integrated-circuit spatial light modulator,” Opt. Lett. 15, 291–293 (1990). [CrossRef] [PubMed]
  22. C. J. Kirkby, “Electro-optic switching response in cubic phase PLZT ceramic materials,” Appl. Opt. 15, 828–830 (1976). [CrossRef] [PubMed]
  23. M. Wraback, H. Shen, J. Pamulapati, M. Dutta, P. Newman, Y. Lu, “Femtosecond studies of ultrafast large-angle polarization rotation in GaAs/AlxGa1-x As multiple quantum wells under uniaxial stress,” in Quantum Optoelectronics, Vol. 8 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), pp. 98–99.
  24. F. B. McCormick, T. J. Cloonan, F. A. Tooley, A. L. Lentine, J. M. Sasian, J. L. Brubaker, R. L. Morrison, S. L. Walker, R. J. Crisci, R. A. Novotny, S. J. Hinterlong, H. S. Hinton, E. Kerbis, “Six-stage digital free-space optical switching network using symmetric self-electro-optic-effect devices,” Appl. Opt. 32, 5153–5171 (1993). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited