OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 34, Iss. 21 — Jul. 20, 1995
  • pp: 4426–4436

Spectroradiometer with wedge interference filters (SWIF): measurements of the spectral optical depths at Mauna Loa Observatory

Oleg B. Vasilyev, Amando Leyva, Agustin Muhila, Mauro Valdes, Ricardo Peralta, Anatoliy P. Kovalenko, Ronald M. Welch, Todd A. Berendes, Vladilen Yu. Isakov, Yuri P. Kulikovskiy, Sergey S. Sokolov, Nikolay N. Strepanov, Sergey S. Gulidov, and Wolfgang von Hoyningen-Huene  »View Author Affiliations


Applied Optics, Vol. 34, Issue 21, pp. 4426-4436 (1995)
http://dx.doi.org/10.1364/AO.34.004426


View Full Text Article

Enhanced HTML    Acrobat PDF (378 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A spectroradiometer with wedge interference filters (SWIF) (the filters were produced by Carl Zeiss, Jena, Germany) and a CCD matrix (which was of Russian production) that functions as the sensor has been designed and built for use in ground-based optical sensing of the atmosphere and the Earth’s surface in the spectral range of 0.35–1.15 μm. Absolute calibration of this instrument was performed through a series of observations of direct solar radiation at Mauna Loa Observatory (MLO) in Hawaii in May and June 1993. Spectral optical depth (SOD) measurements that were made during these field experiments provided detailed spectral information about both aerosol extinction (scattering plus absorption) and molecular absorption in the atmosphere above the site at MLO. The aerosol-SOD measurements were compared with narrow-band radiometer measurements at wavelengths of 380, 500, and 778 nm The SWIF and narrow-band radiometer measurements are in agreement to within the experimental error. At a wavelength of 500 nm, the aerosol SOD was found to be approximately 0.045. A description of the SWIF instrument, its absolute calibration, and the determination of atmospheric SOD’s at MLO are presented.

© 1995 Optical Society of America

History
Original Manuscript: March 21, 1994
Revised Manuscript: January 24, 1995
Published: July 20, 1995

Citation
Oleg B. Vasilyev, Amando Leyva, Agustin Muhila, Mauro Valdes, Ricardo Peralta, Anatoliy P. Kovalenko, Ronald M. Welch, Todd A. Berendes, Vladilen Yu. Isakov, Yuri P. Kulikovskiy, Sergey S. Sokolov, Nikolay N. Strepanov, Sergey S. Gulidov, and Wolfgang von Hoyningen-Huene, "Spectroradiometer with wedge interference filters (SWIF): measurements of the spectral optical depths at Mauna Loa Observatory," Appl. Opt. 34, 4426-4436 (1995)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-34-21-4426


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. F. H. Goetz, M. Herring, “The high-resolution imaging spectrometer (HIRIS) for EOS,” IEEE Trans. Geosci. Remote Sensing 27, 136–144 (1989). [CrossRef]
  2. D. J. Diner, C. J. Bruegge, J. V. Maronchik, T. P. Ackerman, R. Davies, S. A. W. Gertsl, H. R. Gordon, P. J. Sellers, J. Clark, J. A. Daniels, E. D. Danielson, V. Duval, K. P. Klaasen, G. W. Lilienthal, D. I. Nakamoto, R. J. Pagano, T. H. Reilly, “MISR: a multi-angle imaging spectroradiometer for geophysical and climatological research from EOS,” IEEE Trans. Geosci. Remote Sensing 27, 200–214 (1989). [CrossRef]
  3. J. T. Houghton, G. J. Jenkins, J. J. Ephramus, eds., “Climate change: the IPCC scientific assessment,” report prepared for the Intergovernmental Panel on Climate Change (Cambridge U. Press, Cambridge, England, 1990).
  4. B. N. Holben, T. F. Eck, R. S. Fraser, “Temporal and spatial variability of aerosol optical depth in the Sahel region in relation to vegetation remote sensing,” Int. J. Remote Sensing 12, 1147–1163 (1991). [CrossRef]
  5. E. G. Dutton, P. Reddy, S. Ryan, J. J. DeLuisi, “Features and effects of aerosol optical depth observed at Mauna Loa, Hawaii: 1982–1992,” J. Geophys. Res. 99, 8295–8306 (1994); E. G. Dutton, National Oceanic and Atmospheric Administration/Environmental Research Laboratory, Boulder, Co., 80303 (personal communication, 1993). [CrossRef]
  6. International Geophysics Series Vol. 26 (Academic, New York, 1980).
  7. M. D. King, D. M. Byrne, B. M. Herman, J. A. Reagan, “Aerosol size distributions obtained by inversion of spectral optical depth measurements,” J. Atmos. Sci. 35, 2153–2167 (1978). [CrossRef]
  8. M. D. King, “Sensitivity of constrained linear inversions to the selection of the Lagrange multiplier,” J. Atmos. Sci. 39, 1356–1369 (1982). [CrossRef]
  9. J. D. Spinhrine, M. D. King. “Latitudinal variation of spectral optical thickness and columnar size distribution of the El Chichon stratospheric aerosol layer,” J. Geophys. Res. 90, 10,607–10,619 (1985).
  10. K. K. Moorthy, P. R. Nair, B. V. Krishna Murthy, “Size distribution of coastal aerosols: effects of local sources and sinks,” J. Appl. Meterol. 30, 844–852 (1991). [CrossRef]
  11. A. Ångström, “On the atmospheric transmission of sun radiation and on dust in the air,” Geogr. Ann. 2, 156–166 (1929).
  12. A. Ångström, “On the atmospheric transmission of sun radiation,” Geogr. Ann. 23, 130–159 (1930).
  13. A. Ångström, “Techniques of determining turbidity of the atmosphere,” Tellus 13, 214–223 (1961). [CrossRef]
  14. C. Tomasi, E. Caroli, V. Vitale, “Study of the relationship between the Ångström wavelength exponent and Junge particle size distribution exponent,” J. Climate Appl. Meteorol. 22, 1707–1716 (1983). [CrossRef]
  15. M. Iqbal, An Introduction to Solar Radiation (Academic, New York, 1983).
  16. K. S. Shifrin, I. N. Minin, “The theory of nonhorizontal visibility,” Proc. MGO No. 68, (Main Geophysical Observatory, St. Petersburg, Russia, 1957).
  17. O. B. Vasilyev, “On the absorbtivity of tropospheric aerosols in the shortwave range,” in IRS ’92: Current Problems in Atmospheric Radiation, Proceedings of the International Radiation Symposium, Tallinn, Estonia, (Deepak, Hampton, Va., 1993), pp. 349–352.
  18. R. S. Fraser, Y. J. Kaufman, “The relative importance of aerosol scattering and absorption in remote sensing,” IEEE Trans. Geosci. Remote Sensing GE-23, 625–633 (1985). [CrossRef]
  19. R. S. Fraser, R. L. Mahoney, “Satellite measurements of aerosol mass and transport,” Atmos. Environ. 18, 2577–2584 (1984). [CrossRef]
  20. O. B. Vasilyev, A. P. Kovalenko, A. V. Vasilyev, L. S. Ivlev, V. M. Jukov, A. Leyra, A. Muhlia, R. Peralta y Fabi, R. M. Welch, “Report on the spectral optical properties of the polluted atmosphere of Mexico City (Spring–Summer 1992),” Rep. Internos 94–3 (Instituto de Geofisica, Universidad Autonoma de Mexico, Ciudat Universitaria, Distrito Federal, Mexico, 1994).
  21. O. B. Vasilyev, L. S. Ivlev, A. Muhlia, A. Leyra, R. Peralta y Fabi, “Influence of aerosol on radiative transfer in the polluted atmosphere,” in IRS ’92: Current Problems in Atmospheric Radiation, Proceedings of the International Radiation Symposium, Tallinn, Estonia, (Deepak, Hampton, Va., 1993), pp. 195–198.
  22. J. M. Anderson, X. Sun, “Operational use of a variable interference filter pushbroom scanning multispectral imager,” paper presented at the International Symposium on Spectral Sensing Research (ISSSR ’94), San Diego, Calif., 10–15 July 1994.
  23. J. C. Demro, L. M. Woody, “Wedge Imaging Spectrometer (WIS) hyperspectral data collection demonstrate sensor utility,” paper presented at the International Symposium on Spectral Sensing Research (ISSSR ’94), San Diego, Calif., 10–15 July 1994.
  24. O. B. Vasilyev, R. M. Welch, A. L. Contreras, A. M. Velazquez, R. Peralta y Fabi, “Coincident surface and aircraft spectral resolution sensing of atmospheric parameters: a joint American–Mexican–Russian research program,” paper presented at the International Symposium Spectral Sensing Research (ISSSR ’94), San Diego, Calif., 10–15 July 1994.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited