OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 34, Iss. 23 — Aug. 10, 1995
  • pp: 5077–5090

Perfect-shuffle interconnected bitonic sorter: optoelectronic design

M. P. Y. Desmulliez, F. A. P. Tooley, J. A. B. Dines, N. L. Grant, D. J. Goodwill, D. Baillie, B. S. Wherrett, P. W. Foulk, S. Ashcroft, and P. Black  »View Author Affiliations


Applied Optics, Vol. 34, Issue 23, pp. 5077-5090 (1995)
http://dx.doi.org/10.1364/AO.34.005077


View Full Text Article

Enhanced HTML    Acrobat PDF (1073 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The algorithmic, electronic, and optical aspects of the implementation of a perfect-shuffle interconnected bitonic sorter are analyzed. The performance metrics such as the bit output data rate and the power consumption of the system are quantified. The sorting module is designed to demonstrate the parallel nonlocal interconnection of smart-pixel arrays and the use of optical-image control masks in a functioning information processor.

© 1995 Optical Society of America

History
Original Manuscript: November 15, 1994
Published: August 10, 1995

Citation
M. P. Y. Desmulliez, F. A. P. Tooley, J. A. B. Dines, N. L. Grant, D. J. Goodwill, D. Baillie, B. S. Wherrett, P. W. Foulk, S. Ashcroft, and P. Black, "Perfect-shuffle interconnected bitonic sorter: optoelectronic design," Appl. Opt. 34, 5077-5090 (1995)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-34-23-5077


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. S. Wherrett, “All-optical computation: a design for tackling a specific physical problem,” Appl. Opt. 17, 2876–2883 (1985). [CrossRef]
  2. S. D. Smith, A. C. Walker, F. A. P. Tooley, B. S. Wherrett, “The demonstration of restoring digital optical logic,” Nature (London) 325, 27–31 (1987). [CrossRef]
  3. B. S. Wherrett, “Architectural aspects of optical computing,” in Workshop on Photonic Logic and Information Processing, C. M. Bowden, J. G. Duthie, eds., Proc. Soc. Photo-Opt. Instrum. Eng.769, 7–20 (1986).
  4. R. G. A. Craig, B. S. Wherrett, A. C. Walker, F. A. P. Tooley, S. D. Smith, “Optical cellular logic image processor: implementation and programming of a single channel digital optical circuit,” Appl. Opt. 30, 2297–2308 (1991). [CrossRef] [PubMed]
  5. A. C. Walker, I. R. Redmond, D. J. McKnight, R. G. A. Craig, G. S. Buller, P. Meredith, M. R. Taghizadeh, “Construction of an optical cellular logic image processor,” in Topical Meeting on Optical Computing, Z. I. Alferov, J. W. Goodman, A. L. Mikaelian, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1806, 373–377 (1993).
  6. F. A. P. Tooley, S. Wakelin, “Design of a symmetrical self-electro-optic-effect device cellular image processor,” Appl. Opt. 32, 1850–1862 (1993). [CrossRef] [PubMed]
  7. B. S. Wherrett, J. F. Snowdon, S. Bowman, A. Kashko, “Digital optical circuits for 2-D data processing,” in Topical Meeting on Optical Computing, Z. I. Alferov, J. W. Goodman, A. L. Mikaelian, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1806, 333–346 (1993).
  8. L. A. D’Asaro, L. M. F. Chirovsky, E. J. Laskowski, S. S. Pei, T. K. Woodward, A. L. Lentine, R. E. Leibenguth, M. W. Focht, J. M. Freund, G. G. Guth, L. E. Smith, “Batch fabrication and operation of GaAs-AlxGa1−xAs field-effect transistor self-electro-optic effect device (FET-SEED) smart pixel arrays,” IEEE J. Quantum Electron. 29, 670–677 (1993). [CrossRef]
  9. M. J. Goodwin, A. J. Mosely, M. Q. Kearley, R. C. Morris, C. J. G. Kirkby, J. Thompson, R. C. Goodfellow, I. Bennion, “Optoelectronic component array for optical interconnection of circuits and subsystems,” J. Lightwave Technol. 9, 1639–1644 (1991). [CrossRef]
  10. H. S. Stone, “Parallel processing with the perfect shuffle,” IEEE Trans. Comput. C-20, 153–161 (1971). [CrossRef]
  11. D. E. Knuth, The Art of Computer Programming (Addison-Wesley, Reading, Mass., 1973).
  12. Q. W. Song, F. T. S. Yu, “Generalized perfect shuffle using optical spatial filtering,” Appl. Opt. 27, 1222–1228 (1988). [CrossRef] [PubMed]
  13. S. Jutumalia, G. Storti, “Incoherent optical interconnects (perfect shuffle) based on shadow casting,” Appl. Opt. 28, 4262–4263 (1989). [CrossRef]
  14. Y. L. Sheng, “Light effective 2-D optical perfect shuffle using Fresnel mirrors,” Appl. Opt. 28, 3290–3292 (1989). [CrossRef] [PubMed]
  15. S. P. Bian, K. B. Xu, J. Hong, “Optical perfect shuffle using Wollaston prisms,” Appl. Opt. 30, 173–174 (1991). [CrossRef] [PubMed]
  16. M. Tsao, L. Hongpu, L. Xiaan, C. Shaogian, Y. Lide, Y. Yang, “Optical hardware for the perfect shuffle interconnection,” Opt. Comput. Process. 1, 23–27 (1991).
  17. T. J. Cloonan, G. W. Richards, R. L. Morrison, A. L. Lentine, J. M. Sasian, F. B. McCormick, S. J. Hinterlong, H. S. Hinton, “Shuffle-equivalent interconnection topologies based on computer-generated binary phase gratings,” Appl. Opt. 33, 1405–1430 (1994). [CrossRef] [PubMed]
  18. N. Davidson, A. A. Friesem, E. Hasman, “Realization of perfect-shuffle and inverse perfect-shuffle transforms with holographic elements,” Appl. Opt. 31, 1810–1812 (1992). [CrossRef] [PubMed]
  19. K.-H. Brenner, A. Huang, “Optical implementations of the perfect shuffle interconnection,” Appl. Opt. 27, 135–137 (1988). [CrossRef] [PubMed]
  20. M. R. Taghizadeh, J. Turunen, “Synthetic diffractive elements for optical interconnection,” Opt. Comput. and Process. 2, 221–242 (1992).
  21. J. M. Wang, L. Cheng, A. A. Sawchuk, “Optical two-dimensional perfect shuffles based on a one-copy algorithm,” Appl. Opt. 31, 5464–5467 (1992). [CrossRef] [PubMed]
  22. D. P. Godwin, C. D. Carey, S. H. Song, D. R. Selviah, J. E. Midwinter, “Perfect shuffle interconnections using Fresnel computer generated holograms in a planar-optic configuration,” IEE Hologr. Syst. Components Appl. 379, 15–21 (1993).
  23. S. Prince, F. A. P. Tooley, S. Wakelin, M. R. Taghizadeh, “Implementation of optical perfect-shuffle module,” Appl. Opt. 34, 1775–1782 (1994). [CrossRef]
  24. A. S. Miller, L. Cheng, A. A. Sawchuk, “Space multiplexing in multistage optical interconnection networks,” in Topical Meeting on Optical Computing, Z. I. Alfreov, J. W. Goodman, A. L. Mikaelian, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1806, 129–139 (1993).
  25. C. W. Shirk, R. A. Athale, “Sorting with optical compare-and-exchange modules,” Appl. Opt. 27, 1721–1726 (1988). [CrossRef]
  26. S. G. Akl, “Parallel sorting algorithms,” Notes and Reports in Computer Science and Applied Mathematics (Academic, London, 1985), pp. 61–79.
  27. K. E. Batcher, “Sorting networks and their applications,” in Proceedings of the Spring Joint Computer Conference (American Federation of Information Processing Societies, Reston, Virginia, 1968), Vol. 32, pp. 307–314.
  28. T. Lang, H. S. Stone, “A shuffle-exchange network with simplified control,” IEEE Trans. Comput. C-25, 55–65 (1976). [CrossRef]
  29. J. Giglmayr, “Properties of optically implemented shuffle interconnections,” Opt. Commun. 93, 112–115 (1992). [CrossRef]
  30. M. W. Haney, “Optoelectronic shuffle-exchange network for multiprocessor architectures,” in Photonic Switching, 1991 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1991), pp. 115–118.
  31. Z. Fang, X. Li, L. M. Ni, “On the communication complexity of generalized 2-D convolution on array processors,” IEEE Trans. Comput. 38, 184–193 (1989). [CrossRef]
  32. C. L. Wu, T. Y. Fend, “The universality of the shuffle-exchange network,” IEEE Trans. Comput. C-30, 324–340 (1981). [CrossRef]
  33. L. Cheng, A. A. Sawchuk, “Three-dimensional Omega networks for optical implementation,” Appl. Opt. 31, 5468–5479 (1991). [CrossRef]
  34. H. D. L. Hollman, J. H. VinLint, “Nonblocking self-routing switching networks,” Discrete Appl. Math. 37, 319–340 (1992). [CrossRef]
  35. D. S. Parker, “Notes on shuffle/exchange-type switching networks,” IEEE Trans. Comput. C-29, 213–222 (1980). [CrossRef]
  36. P. R. Prucnal, “Optically processed self-routing, synchronization, and contention resolution for 1-D and 2-D photonic switching architecture,” IEEE J. Quantum Electron. 29, 600–612 (1993). [CrossRef]
  37. E. Gluch, H. Koboll, K. Zürl, N. Streibl, J. Schwider, “Demonstration for an optoelectronic switching network,” J. Mod. Opt. 40, 1857–1869 (1993). [CrossRef]
  38. L. Zhang, R. Jin, C. W. Stirk, G. Khitrova, R. A. Athale, H. M. Gibbs, H. M. Chou, R. W. Sprague, H. A. Macleod, “All-optical compare and exchange switches,” IEEE J. Select. Areas Communic. 6, 1273–1279 (1988). [CrossRef]
  39. C. W. Stirk, R. A. Atale, M. W. Haney, “Folded perfect shuffle optical processor,” Appl. Opt. 27, 202–203 (1988). [CrossRef] [PubMed]
  40. D. Nassimi, S. Sahni, “A self-routing Benes network and parallel permutation algorithm,” IEEE Trans. Comput. C-30, 332–340 (1981). [CrossRef]
  41. M. W. Haney, J. J. Levy, “Optically efficient free-space folded perfect shuffle network,” Appl. Opt. 30, 2833–2840 (1991). [CrossRef] [PubMed]
  42. S. Y. Kung, S. C. Lu, S. N. Jem, J. N. Hwang, “Wavefront array processors, concepts to implementation,” Computer (July1987), 18–33. [CrossRef]
  43. D. J. Goodwill, A. C. Walker, C. R. Stanley, M. C. Holland, M. McElhinney, “Improvements in strain-balanced InGaAs/GaAs optical modulators for 1047-nm operation,” Appl. Phys. Lett. 64, 1192–1194 (1994). [CrossRef]
  44. D. J. Goodwill, F. A. P. Tooley, A. C. Walker, M. R. Taghizadeh, M. McElhinney, F. Pottier, C. Stanley, D. G. Vass, I. Underwood, M. W. G. Snook, M. H. Dunn, J. Hong, B. D. Sinclair, “InGaAs S-SEED’s and silicon CMOS smart pixels for 1047–1064-nm operation,” presented at the IEEE/LEOS Topical Meeting on Smart Pixels, Lake Tahoe, Nev.6–13 July 1994.
  45. A. L. Lentine, L. M. F. Chirovsky, T. K. Woodward, “Optical energy considerations for diode clamped smart pixel optical receivers,” IEEE J. Quantum Electron. 30, 1167–1171 (1994). [CrossRef]
  46. S. M. Prince, C. P. Beauchamp, F. A. P. Tooley, “Tolerancing of arrays of microlenses: a case study,” Pure Appl. Opt. 3, 151–165 (1994). [CrossRef]
  47. M. P. Y. Desmulliez, F. A. P. Tooley, G. J. Crowder, N. L. Grant, B. S. Wherrett, P. W. Foulk, “Arrays of processing nodes of massively parallel sorting using optical switching and interconnect,” presented at the First International Conference on Application-Specific Integrated Circuits, Beijing, China, 18–21 October 1994.
  48. L. Cheng, J. M. Wang, A. A. Sawchuk, “Design of space-multiplexed three-dimensional Omega networks and their optical implementation,” Appl. Opt. 32, 6482–6492 (1993). [CrossRef] [PubMed]
  49. N. Davidson, A. A. Friesem, E. Hasman, “On the limits of optical interconnects,” Appl. Opt. 31, 5426–5430 (1992). [CrossRef] [PubMed]
  50. A. L. Lentine, L. M. F. Chirovsky, M. W. Focht, J. M. Freund, G. D. Guth, R. E. Leibenguth, G. J. Przybylek, L. E. Smith, “Diode-clamped symmetric self-electro-optic effect devices with subpicojoule switching energies,” Appl. Phys. Lett. 60, 1809–1811 (1992). [CrossRef]
  51. A. W. Yu, M. A. Krainak, G. L. Unger, “1047-nm laser diode master oscillator Nd:YLF power amplifier laser system,” Electron. Lett. 29, 678–679 (1993). [CrossRef]
  52. J. S. Mayor, W. E. Plano, D. F. Welch, “High-power InGaAsP/GaAs laser diodes,” in CLEO ’94, Vol. 8 of 1994 Technical Digest Series (Optical Society of America, Washington, D.C., 1994), p. 25.
  53. C. R. Jesshope, “The implementation of fast radix 2 transforms on array processors,” IEEE Trans. Comput., C-29, 20–27 (1980). [CrossRef]
  54. J. A. B. Dines, “Timing comparisons between optically and electrically connected parallel single-instruction multiple-stream computers performing fast-Fourier-transform and bitonic-sorting algorithms,” Appl. Opt. (to be published).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited