OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 34, Iss. 24 — Aug. 20, 1995
  • pp: 5501–5512

Single-pulse, two-line temperature-measurement technique using KrF laser-induced O2 fluorescence

J. H. Grinstead, G. Laufer, and J. C. McDaniel, Jr.  »View Author Affiliations


Applied Optics, Vol. 34, Issue 24, pp. 5501-5512 (1995)
http://dx.doi.org/10.1364/AO.34.005501


View Full Text Article

Enhanced HTML    Acrobat PDF (378 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A new single-pulse, two-line laser-induced O2 fluorescence (LIF) temperature-measurement technique was demonstrated. The fluorescence spectrum obtained with multichannel detection following simultaneous excitation of two coincident transitions in the 0–6 and the 2–7 bands of the B 3 u X 3 g Schumann–Runge system was used to determine the gas temperature. The rms error of 100-pulse average LIF temperature measurements, referenced to their corresponding thermocouple measurements, was 1.3% over a temperature range of 1300–1800 K in atmospheric air. Photon shot noise was found to be the primary source of uncertainty for these measurements in a quiescent environment. Single-pulse temperature-measurement uncertainties (1 σ) ranged from approximately 13% at 1300 K to 7% at 1800 K.

© 1995 Optical Society of America

History
Original Manuscript: November 14, 1994
Revised Manuscript: March 14, 1995
Published: August 20, 1995

Citation
J. H. Grinstead, G. Laufer, and J. C. McDaniel, "Single-pulse, two-line temperature-measurement technique using KrF laser-induced O2 fluorescence," Appl. Opt. 34, 5501-5512 (1995)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-34-24-5501


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. W. Pitz, R. Cattolica, F. Robben, L. Talbot, “Temperature and density from Rayleigh scattering,” Combust. Flame 27, 313–320 (1976). [CrossRef]
  2. W. Stricker, “Local temperature measurement in flames by laser Raman spectroscopy,” Combust. Flame 27, 133–136 (1976). [CrossRef]
  3. A. C. Eckbreth, “Coherent anti-Stokes Raman spectroscopy,” in Laser Diagnostics for Combustion Temperature and Species, A. K. Gupta, D. G. Lilley, eds., Vol. 7 of Energy and Engineering Science Series (Abacus, Cambridge, Mass., 1988), Chap. 6, pp. 220–300.
  4. A. C. Eckbreth, “Laser-induced fluorescence spectroscopy (LIFS),” in Laser Diagnostics for CombustionTemperature and Species, A. K. Gupta, D. G. Lilley, eds., Vol. 7 of Energy and Engineering Science Series (Abacus, Cambridge, Mass., 1988), Chap. 7, pp. 301–349.
  5. G. Laufer, R. L. McKenzie, D. G. Fletcher, “Method for measuring temperature and densities in hypersonic wind tunnel flows using laser-induced O2 fluorescence,” Appl. Opt. 27, 4873–4883 (1990). [CrossRef]
  6. D. G. Fletcher, R. L. McKenzie, “Single-pulse measurements of density and temperature in a turbulent, supersonic flow using UV laser spectroscopy,” Opt. Lett. 17, 1614–1616 (1992). [CrossRef] [PubMed]
  7. K. R. Gross, R. L. McKenzie, R. Logan, “Measurements of temperature, density, pressure, and their fluctuations in supersonic turbulence using laser-induced fluorescence,” Exp. Fluids 5, 372–380 (1987). [CrossRef]
  8. J. M. Seitzman, R. K. Hanson, P. A. DeBarber, C. F. Hess, “Application of quantitative two-line OH planar laser-induced fluorescence for temporally resolved planar thermometry in reacting flows,” Appl. Opt. 33, 4000–4012 (1994). [CrossRef] [PubMed]
  9. B. K. McMillin, J. M. Seitzman, R. K. Hanson, “Comparison of NO and OH planar laser-induced fluorescence temperature measurements in scramjet model flowfields,” AIAA J. 32, 1945–1952 (1994). [CrossRef]
  10. B. K. McMillin, J. L. Palmer, R. K. Hanson, “Temporally resolved, two-line fluorescence imaging of NO temperature in a transverse jet in supersonic cross flow,” Appl. Opt. 32, 7532–7545 (1993). [CrossRef] [PubMed]
  11. K. Shibuya, F. Stuhl, “Single vibronic emission from NO B2Π (v′ = 7) and O2B ³∑u− (v′ = 4) excited by 193 nm ArF laser,” J. Chem. Phys. 75, 1184–1186 (1982). [CrossRef]
  12. P. Andresen, A. Bath, W. Gröger, H. W. Lülf, G. Meijer, J. J. ter Meulen, “Laser-induced fluorescence with tunable excimer lasers as a possible method for instantaneous temperature field measurements at high pressures: checks with an atmospheric flame,” Appl. Opt. 27, 365–378 (1988). [CrossRef] [PubMed]
  13. R. A. Copeland, P. C. Cosby, D. R. Crosley, J. B. Jeffries, T. G. Slanger, “Vibrationally excited O2 in flames: measurements on v″ = 9–11 by laser-induced fluorescence,” J. Chem. Phys. 86, 2500–2504 (1987). [CrossRef]
  14. J. E. M. Goldsmith, R. J. M. Anderson, “Laser-induced fluorescence spectroscopy and imaging of molecular oxygen in flames,” Opt. Lett. 11, 67–69 (1986). [CrossRef] [PubMed]
  15. I. J. Wysong, J. B. Jeffries, D. R. Crosley, “Laser-induced fluorescence of O (3p3P), O2, and NO near 226 nm: photolytic interferences and simultaneous excitation in flames,” Opt. Lett. 14, 767–769 (1989). [CrossRef] [PubMed]
  16. G. A. Massey, C. J. Lemon, “Feasibility of measuring temperature and density fluctuations in air using laser-induced O2 fluorescence,” IEEE J. Quantum Electron. QE-20, 454–457 (1984). [CrossRef]
  17. M. P. Lee, P. H. Paul, R. K. Hanson, “Quantitative imaging of temperature fields in air using planar laser-induced fluorescence of O2,” Opt. Lett. 12, 75–77 (1987). [CrossRef] [PubMed]
  18. R. B. Miles, P. J. Howard, E. C. Markovitz, G. J. Roth, “Proposed single-pulse two-dimensional temperature and density measurements of oxygen and air,” Opt. Lett. 13, 195–197 (1988). [CrossRef] [PubMed]
  19. M. S. Smith, L. L. Price, W. D. Williams, “Laser-induced fluorescence diagnostics using a two-line excitation method,” AIAA J. 31, 478–482 (1993). [CrossRef]
  20. J. H. Grinstead, G. Laufer, “Requirements for temperature measurements in nonequilibrium flows using laser-induced O2 fluorescence,” in Proceedings of the 14th International Conference on Instrumentation for Aerospace Simulation Facilities (Institute of Electrical and Electronics Engineers, New York, 1991), pp. 262–269.
  21. J. H. Grinstead, G. Laufer, J. C. McDaniel, “Measurements of KrF laser-induced O2 fluorescence in high-temperature atmospheric air,” in AIAA 31st Aerospace Sciences Meeting (American Institute of Aeronautics and Astronautics, Washington D.C., 1993), paper AIAA 93-0045.
  22. P. H. Krupenie, “The spectrum of molecular oxygen,” J. Phys. Chem. Ref. Data 1, 423–534 (1972). [CrossRef]
  23. P. Andresen, H. Schlüter, D. Wolff, H. Voges, A. Koch, W. Hentschel, W. Opperman, E. Rothe, “Identification and imaging of OH (v″ = 0) and O2 (v″ = 6 or 7) in an automobile spark-ignition engine using a tunable KrF excimer laser,” Appl. Opt. 31, 7684–7689 (1992). [CrossRef] [PubMed]
  24. A. Arnold, W. Ketterle, H. Becker, J. Wolfrum, “Simultaneous single-shot imaging of OH and O2 using a two-wavelength excimer laser,” Appl. Phys. B 51, 99–102 (1990). [CrossRef]
  25. J. H. Grinstead, G. Laufer, J. C. McDaniel, “Rotational temperature measurement in high-temperature air using KrF laser-induced O2 fluorescence,” Appl. Phys. B 57, 393–396 (1993). [CrossRef]
  26. P. C. Cosby, H. Park, R. A. Copeland, T. G. Slanger, “Predissociation linewidths in O2B ³∑u− (v=0,2),” J. Chem. Phys. 98, 5117–5133 (1993). [CrossRef]
  27. K. Yoshino, D. E. Freeman, W. H. Parkinson, “Atlas of the Schumann–Runge bands of O2 in the wavelength region 175–205 nm,” J. Phys. Chem. Ref. Data 13, 207–227 (1984). [CrossRef]
  28. J. A. Wehrmeyer, T-S. Cheng, R. W. Pitz, “Raman scattering measurements in flames using a tunable KrF excimer laser,” Appl. Opt. 31, 1495–1504 (1992). [CrossRef] [PubMed]
  29. J. H. Grinstead, G. Laufer, R. H. Krauss, J. C. McDaniel, “Calibration source for OH laser-induced fluorescence-density measurements with thermally dissociated H2O in atmospheric air,” Appl. Opt. 33, 1115–1119 (1994). [CrossRef] [PubMed]
  30. A. S-C. Cheung, K. Yoshino, W. H. Parkinson, D. E. Freeman, “Molecular spectroscopic constants of O2(B3∑u−): the upper state of the Schumann–Runge bands,” J. Mol. Spectrosc. 119, 1–10 (1986). [CrossRef]
  31. P. C. Cosby, SRI International, Menlo Park, Calif, 94025 (personal communication, 1990).
  32. M. W. P. Cann, R. W. Nicholls, W. F. J. Evans, J. L. Kohl, R. Kurucz, W. H. Parkinson, E. M. Reeves, “High resolution atmospheric transmission calculations down to 28.7 km in the 200–243 nm spectral range,” Appl. Opt. 18, 964–977 (1979). [CrossRef] [PubMed]
  33. J. H. Grinstead, “Temperature measurement in high-temperature gases using KrF laser-induced O2 fluorescence,” Ph.D. dissertation (Department of Mechanical, Aerospace, and Nuclear Engineering, University of Virginia, Charlottesville, Va., 1995).
  34. A. S-C. Cheung, D. K-W. Mok, Y. Sun, D. E. Freeman, “The potential-energy curve for the B3∑u− state of oxygen and accurate Franck–Condon factors for the Schumann–Runge bands,” J. Mol. Spectrosc. 163, 9–18 (1994). [CrossRef]
  35. J. B. Tatum, “Hönl–London factors for 3Σ±–3Σ± transitions,” Can. J. Phys. 44, 2944–2946 (1966). [CrossRef]
  36. E. L. Dereniak, D. G. Crowe, Optical Radiation Detectors (Wiley, New York, 1984), Chap. 2, pp. 18–19.
  37. J. H. Grinstead, T. M. Quagliaroli, G. Laufer, J. C. McDaniel, “Single-pulse temperature measurements in a turbulent flame using KrF laser-induced O2 fluorescence,” in AIAA 33rd Aerospace Sciences Meeting (American Institute of Aeronautics and Astronautics, Washington, D.C., 1995), paper AIAA 95-00423.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited