OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 34, Iss. 25 — Sep. 1, 1995
  • pp: 5699–5707

Multiple scattering in optical coherence microscopy

M. J. Yadlowsky, J. M. Schmitt, and R. F. Bonner  »View Author Affiliations


Applied Optics, Vol. 34, Issue 25, pp. 5699-5707 (1995)
http://dx.doi.org/10.1364/AO.34.005699


View Full Text Article

Enhanced HTML    Acrobat PDF (980 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We show that the multiple-scatter rejection provided by optical coherence microscopy (low-coherence interferometry) can be incomplete in optically turbid media and that multiple scattering manifests itself in two distinct ways. Multiple small-angle scattering results in an effective probe field that is stronger than expected from a first-order beam extinction model, but that contains a distorted wave front that enhances the apparent reflectance of small structures relative to those that are larger than the unscattered incident beam. Multiple wide-angle scattering produces a broad diffuse haze that reduces the contrast of subsequent features.

© 1995 Optical Society of America

History
Original Manuscript: August 25, 1994
Revised Manuscript: March 31, 1995
Published: September 1, 1995

Citation
M. J. Yadlowsky, J. M. Schmitt, and R. F. Bonner, "Multiple scattering in optical coherence microscopy," Appl. Opt. 34, 5699-5707 (1995)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-34-25-5699


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Huang, J. Wand, C. P. Lin, C. A. Puliafito, J. G. Fujimoto, “Micron-resolution ranging of cornea anterior chamber by optical reflectometry,” Lasers Surg. Med. 11, 419–425 (1991). [CrossRef] [PubMed]
  2. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991). [CrossRef] [PubMed]
  3. C. K. Hitzenberger, “Measurement of corneal thickness by low-coherence interferometry,” Appl. Opt. 31, 6637–6642 (1992). [CrossRef] [PubMed]
  4. E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, J. G. Fujimoto, “In vivo retinal imaging by optical coherence tomography,” Opt. Lett. 17, 151–153 (1992). [CrossRef] [PubMed]
  5. J. M. Schmitt, A. Knüttel, R. F. Bonner, “Measurement of optical properties of biological tissues by low-coherence reflectometry,” Appl. Opt. 32, 6032–6042 (1993). [CrossRef] [PubMed]
  6. J. M. Schmitt, A. Knüttel, A. Gandjbakhche, R. F. Bonner, “Optical characterization of dense tissues using low-coherence interferometry,” in Holography, Interferometry, and Optical Pattern Recognition in Biomedicine III, H. Podbielska, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1889, 197–210 (1993).
  7. J. M. Schmitt, A. Knüttel, M. Yadlowsky, M. A. Eckhaus, “Optical-coherence tomography of a dense tissue: statistics of attenuation and backscattering,” Phys. Med. Biol. 39, 1705–1720 (1994). [CrossRef] [PubMed]
  8. J. A. Izatt, M. R. Hee, G. M. Owen, E. A. Swanson, J. G. Fujimoto, “Optical coherence microscopy in scattering media,” Opt. Lett. 19, 590–592 (1994). [CrossRef] [PubMed]
  9. C. M. Sonnenschein, F. A. Horrigan, “Signal-to-noise relationships for coaxial systems that heterodyne backscatter from the atmosphere,” Appl. Opt. 10, 1600–1604 (1971). [CrossRef] [PubMed]
  10. J. M. Schmitt, M. J. Yadlowsky, R. F. Bonner, “Subsurface imaging of living skin with optical coherence microscopy,” Dermatology (to be published).
  11. S. Kimura, T. Wilson, “Confocal scanning microscope using single-mode fiber for signal detection,” Appl. Opt. 30, 2143–2150 (1991). [CrossRef] [PubMed]
  12. C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
  13. J. M. Schmitt, A. Knüttel, M. Yadlowsky, R. F. Bonner, “Interferometric versus confocal techniques for imaging microstructures in turbid biological media,” in Advances in Laser and Light Spectroscopy to Diagnose Cancer and Other Diseases, R. R. Alfano, ed., Proc. Soc. Photo-Opt. Instrum. Eng.2135, 251–262 (1994).
  14. H. T. Yura, “Signal-to-noise ratio of heterodyne lidar systems in the presence of atmospheric turbulence,” Opt. Acta 26, 627–644 (1979). [CrossRef]
  15. J. M. Schmitt, A. Knüttel, M. Yadlowsky, “Confocal microscopy in turbid media,” J. Opt. Soc. Am. A 11, 2226–2235 (1994). [CrossRef]
  16. D. L. Fried, “Optical heterodyne detection of an atmospherically distorted signal wave front,” Proc. IEEE 55, 57–67 (1967). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited