OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 34, Iss. 25 — Sep. 1, 1995
  • pp: 5708–5714

Measurement of the complex refractive index of liquids in the infrared using spectroscopic attenuated total reflection ellipsometry: correction for depolarization by scattering

J. H. W. G. den Boer, G. M. W. Kroesen, and F. J. de Hoog  »View Author Affiliations


Applied Optics, Vol. 34, Issue 25, pp. 5708-5714 (1995)
http://dx.doi.org/10.1364/AO.34.005708


View Full Text Article

Enhanced HTML    Acrobat PDF (214 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

With spectroscopic ellipsometry one can measure the real and imaginary parts of the refractive index of a medium simultaneously. To determine this index in the infrared for a number of technical liquids, use was made of attenuated total internal reflection at the glass–liquid interface of a specially designed prism. This attenuated total reflection approach warrants minimal signal loss and is, for strongly absorbing liquids, the only way to measure the complex refractive index. A surprising phenomenon, observed when BK-7 prism glass was used, is scattering in the vicinity of the absorption wavelengths of the glass. A simple model that can be used to describe the relations among absorption, scattering, and depolarization was successfully used to correct the measurements. Refractive indices for demineralized water, Freon 113, heptane, benzene, gas oil, and crude oil in the wave number range from 5000 to 10,000 cm−1 (1–2 μm) are presented.

© 1995 Optical Society of America

History
Original Manuscript: July 25, 1994
Revised Manuscript: March 14, 1995
Published: September 1, 1995

Citation
J. H. W. G. den Boer, G. M. W. Kroesen, and F. J. de Hoog, "Measurement of the complex refractive index of liquids in the infrared using spectroscopic attenuated total reflection ellipsometry: correction for depolarization by scattering," Appl. Opt. 34, 5708-5714 (1995)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-34-25-5708


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. E. Jelley, in Physical Methods of Organic Chemistry, A. Weissberger, ed. (Interscience, New York, 1960), Part 2, Chap. 21, p. 1458.
  2. W. L. Wolfe, “Properties of optical materials,” in Handbook of Optics, W. G. Driscoll, W. Vaughan, eds. (McGraw-Hill, New York, 1978), Chap. 7, p. 7-2.
  3. W. Nebe, “Routine- und Präzisionsmessungen an Flüs-sigkeiten und Gläsern,” Mess. Steuern Regeln 9, 177–179 (1971); Mess. Steuern Regeln 11, 216–220 (1971).
  4. Ph. Marteau, G. Montixi, J. Obriot, T. K. Bose, J. M. St Arnaud, “Simple method for the accurate determination of the refractive index of liquids in the infrared,” in Infrared Technology XVI, I. J. Spiro, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1341, 275–278 (1990).
  5. T. Li, X. Tan, “Stepwise interferometric method of measuring the refractive index of liquid samples,” Appl. Opt. 32, 2274–2277 (1993). [CrossRef] [PubMed]
  6. E. Moreels, C. de Greef, R. Finsy, “Laser light refractometer,” Appl. Opt. 23, 3010–3013 (1984). [CrossRef] [PubMed]
  7. M. V. R. K. Murty, R. P. Shukla, “Simple method for measuring the refractive index of a liquid or glass wedge,” Opt. Eng. 22, 227–230 (1983).
  8. M. A. Havstad, W. McLean, S. A. Self, “Measurement of the thermal radiative properties of liquid uranium,” in Developments in Radiative Heat Transfer, S. T. Thynell, ed., HTD Vol. 203 (American Society of Mechanical Engineers, New York, 1992), pp. 9–17.
  9. M. Brückner, J. H. Schäfer, C. Schiffer, J. Uhlenbusch, “Measurement of the optical constants of solid and molten gold and tin at λ = 10.6 μm,” J. Appl. Phys. 70, 1642–1647 (1991). [CrossRef]
  10. N. J. Harrick, Internal Reflection Spectroscopy (Interscience, New York, 1967), p. 13.
  11. J. H. W. G. den Boer, G. M. W. Kroesen, M. Haverlag, F. J. de Hoog, “Spectroscopic IR ellipsometry with imperfect components,” Thin Solid Films 234, 323–326 (1993). [CrossRef]
  12. R. M. A. Azzam, N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, Amsterdam, 1979), p. 274.
  13. M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1959), p. 48.
  14. A. T. M. Wilbers, G. M. W. Kroesen, C. J. Timmermans, D. C. Schram, “Characteristic quantities of a cascade arc used as a light source for spectroscopic techniques,” Meas. Sci. Technol. 1, 1326–1332 (1990). [CrossRef]
  15. Ref. 13, p. 97.
  16. A. Röseler, Infrared Spectroscopic Ellipsometry (Akademie-Verlag, Berlin, 1990), p. 58.
  17. H. C. van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957), p. 278.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited