OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 34, Iss. 27 — Sep. 20, 1995
  • pp: 6058–6066

Binary adaptive optics: atmospheric wave-front correction with a half-wave phase shifter

Gordon D. Love, Nigel Andrews, Philip Birch, David Buscher, Peter Doel, Colin Dunlop, John Major, Richard Myers, Alan Purvis, Ray Sharples, Andrew Vick, Andrew Zadrozny, Sergio R. Restaino, and Andreas Glindemann  »View Author Affiliations

Applied Optics, Vol. 34, Issue 27, pp. 6058-6066 (1995)

View Full Text Article

Enhanced HTML    Acrobat PDF (1632 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We describe a binary approach to adaptive wave-front correction, especially suitable for narrow band applications, which would be simpler than conventional adaptive technology. Appropriate parts of the aberrant wave front are phase retarded by half a wavelength to ensure that none of the image-forming rays add together destructively. Simulations for monochromatic light show that the residual wave-front errors, in the absence of other errors, would result in Strehl ratios of ~40% with diffraction-limited widths at visible wavelengths. We simulate the imaging performance of such a system and describe a possible implementation that uses a ferroelectric liquid-crystal spatial light modulator.

© 1995 Optical Society of America

Original Manuscript: May 11, 1994
Revised Manuscript: March 24, 1995
Published: September 20, 1995

Gordon D. Love, Nigel Andrews, Philip Birch, David Buscher, Peter Doel, Colin Dunlop, John Major, Richard Myers, Alan Purvis, Ray Sharples, Andrew Vick, Andrew Zadrozny, Sergio R. Restaino, and Andreas Glindemann, "Binary adaptive optics: atmospheric wave-front correction with a half-wave phase shifter," Appl. Opt. 34, 6058-6066 (1995)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Love, R. Myers, A. Purvis, R. Sharples, “A new approach to adaptive wavefront correction using a liquid crystal half-wave phase shifter,” in ICO-16 Conference on Active and Adaptive Optics, (European Southern Observatory, Garching bei München, 1993), pp. 295–300.
  2. V. N. Mahajan, Aberration Theory Made Simple, SPIE Tutorial Text 6 (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1991). [CrossRef]
  3. A. Glindemann, “Improved performance of adaptive optics in the visible,” J. Opt. Soc. Am. A 11, 1370–1375 (1994). [CrossRef]
  4. R. G. Lane, A. Glindemann, J. C. Dainty, “Simulations of a Kolmogorov phase screen,” Waves in Random Media 2, 209–224 (1992). [CrossRef]
  5. R. H. Dicke, “Phase-contrast detection of telescope seeing errors and their correction,” Astrophys. J. 198, 605–615 (1975). [CrossRef]
  6. J. R. P. Angel, “Ground based imaging of extrasolar planets,” Nature 368, 203–207 (1994). [CrossRef]
  7. J. R. P. Angel, “Optimization of wavefront sensors for the highest accuracy and sensitivity,” in Adaptive Optics for Astronomy, D. Alloin, J. M. Mariotti, eds. NATO Series C (Kluwer, Dordrecht, The Netherlands, 1994).
  8. K. Creath, “Phase-measurement interferometry techniques,” in Progress in Optics, E. Wolf ed. (North-Holland, Amsterdam, 1988), Vol. 26, pp. 349–392. [CrossRef]
  9. M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, New York, 1989), p. 468.
  10. G. Love, J. Major, A. Purvis, “Liquid-crystal prisms for tip-tilt adaptive optics,” Opt. Lett. 19, 1170–1172 (1994). [CrossRef] [PubMed]
  11. S. R. Restaino, E. L. Gates, R. Dymale, G. C. Loos, “Use of electro-optical devices for path-length compensation,” in Amplitude and Intensity Spatial Interferometry II, J. B. Breckinridge, ed., Proc. Soc. Photo-Opt. Instrum. Eng.2200, 494–500 (1994).
  12. G. D. Love, S. R. Restaino, G. C. Loos, A. Purvis, “Wavefront control using a 64 × 64 pixel liquid crystal array,” in Adaptive Optics in Astronomy, M. A. Ealey, F. Merkle, eds., Proc. Soc. Photo-Opt. Instrum. Eng.2201, 1068–1072 (1994).
  13. G. D. Love, R. Bhandari, “Optical properties of a QHQ ferroelectric liquid crystal phase modulator,” Opt. Commun. 110, 475–478 (1994). [CrossRef]
  14. Chisso Corporation, Makuhari Head Office, WBG Marive West 24F, 2–6 Nakese Mihama, Chiba, Japan.
  15. M. A. A. Neil, “Improved transmission in a 2-level, phase-only spatial light modulator,” Electron. Lett. 30, 445–446 (1994). [CrossRef]
  16. Displaytech, Inc., 2200 Central Avenue, Boulder, Colo. 80301.
  17. K. M. Johnson, D. J. McKnight, I. Underwood, “Smart spatial light modulators using liquid crystals on silicon,” IEEE J. Quantum Electron. 29, 699–714 (1993). [CrossRef]
  18. Boulder Nonlinear Systems, 1898 South Flatiron Court, Boulder, Colo. 80301.
  19. CRL Smectic Technology, Dawley Road, Hayes, UB3 1HH, UK.
  20. G. Moddel, “Ferroelectric liquid crystal spatial light modulators,” in Spatial Light Modulator Technology, U. Efron, ed. (Dekker, New York, 1995), pp. 287–359.
  21. A. D. Fisher, C. Warde, “Technique for real-time high-resolution adaptive phase compensation,” Opt. Lett 8, 353–355 (1983). [CrossRef] [PubMed]
  22. I. Thomas, “Programmable correction for optical aberrations using a phase-only spatial light modulator,” M.S. thesis (Department of Engineering Science, University of Oxford, Oxford, UK1993).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited