OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 34, Iss. 27 — Sep. 20, 1995
  • pp: 6187–6200

CO2 laser-based differential absorption lidar system for range-resolved and long-range detection of chemical vapor plumes

Clinton B. Carlisle, Jan E. van der Laan, Lewis W. Carr, Philippe Adam, and Jean-Pierre Chiaroni  »View Author Affiliations


Applied Optics, Vol. 34, Issue 27, pp. 6187-6200 (1995)
http://dx.doi.org/10.1364/AO.34.006187


View Full Text Article

Enhanced HTML    Acrobat PDF (2791 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A dual CO2 laser-based differential absorption lidar (DIAL) system has been constructed and demonstrated for range-resolved mapping of chemical vapor plumes. The system acquires high range resolution through the use of plasma-shutter pulse clippers that extinguish the nitrogen tail of the CO2-laser output. A programmable servomotor-driven scanner allows full hemispherical coverage of the interrogated field. A high-speed direct-detection receiver subsystem is used to gather, process, and display vapor-concentration data in near real time. Data demonstrating range-resolved detection of low concentrations of chemical plumes from ranges of 1 to 2 km are presented. In the column-content detection mode, trace levels of secondary vapors from various organophosphate liquids were monitored. Detection of an SF6 vapor plume released 16 km from the DIAL system is also adduced.

© 1995 Optical Society of America

History
Original Manuscript: April 13, 1994
Revised Manuscript: March 15, 1995
Published: September 20, 1995

Citation
Clinton B. Carlisle, Jan E. van der Laan, Lewis W. Carr, Philippe Adam, and Jean-Pierre Chiaroni, "CO2 laser-based differential absorption lidar system for range-resolved and long-range detection of chemical vapor plumes," Appl. Opt. 34, 6187-6200 (1995)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-34-27-6187


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. R. Murray, R. D. Hake, J. E. van der Laan, J. G. Hawley, “Atmospheric water vapor measurements with a 10 micron DIAL system,” Appl. Phys. Lett. 28, 542–543 (1976). [CrossRef]
  2. E. R. Murray, J. E. van der Laan, “Remote measurement of ethylene using a CO2 differential-absorption lidar,” Appl. Opt. 17, 814–817 (1978). [CrossRef] [PubMed]
  3. N. Menyuk, D. K. Killinger, W. E. DeFeo, “Laser remote sensing of hydrazine, MMH, and UDMH, using a differential-absorption CO2 lidar,” Appl. Opt. 21, 2275–2286 (1982). [CrossRef] [PubMed]
  4. H. Ahlberg, S. Lundqvist, B. Olsson, “CO2 laser long-path measurements of diffuse leakages from a petrochemical plant,” Appl. Opt. 24, 3924–3928 (1985). [CrossRef] [PubMed]
  5. A. Ben-David, S. L. Emery, S. W. Gotoff, F. D’Amico, “High pulse repetition frequency, multiple wavelength, pulsed CO2 lidar system for atmospheric transmission and target reflectance measurements,” Appl. Opt. 31, 4224–4232 (1992). [CrossRef] [PubMed]
  6. A. P. Force, D. K. Killinger, W. E. DeFeo, N. Menyuk, “Laser remote sensing of atmospheric ammonia using a CO2 lidar system,” Appl. Opt. 24, 2837–2841 (1985). [CrossRef] [PubMed]
  7. A. J. Campillo, “Fresnel diffraction effects in the design of high-power laser systems,” J. Appl. Phys. 23, 83–85 (1973).
  8. P. Holland, J. van der Laan, K. Phelps, S. Gotoff, “Design of a mobile differential absorption lidar (DIAL) system,” in Proceedings of the International Conference on Lasers ’87 (STS, McLean, Va., 1988), pp. 694–695.
  9. J. Leonelli, J. van der Laan, P. Holland, L. Fletcher, R. Warren, D. McPherrin, “Multiwavelength CO2 DIAL system designed for quantitative concentration measurement,” in Proceedings of the International Conference on Lasers ’89 (STS, McLean, Va., 1990), pp. 567–573.
  10. Y. Zhao, T. K. Lea, R. M. Schotland, “Correction function for the lidar equation and some techniques for incoherent CO2 lidar data reduction,” Appl. Opt. 27, 2730–2740 (1988). [CrossRef] [PubMed]
  11. A. Ben-David, A. P. Force, F. M. D’Amico, S. L. Emery, “The effect of a CO2 laser pulse shape on the accuracy of DIAL measurements,” J. Atmos. Oceanic Technol. 9, 520–525 (1992). [CrossRef]
  12. R. E. Warren, “Detection and discrimination using multiple wavelength differential absorption lidar,” Appl. Opt. 24, 3541–3545 (1985). [CrossRef] [PubMed]
  13. J. G. Hawley, “1985 lidar test program,” Final Report, contract DAAK11-82-C-0158 (SRI International, Menlo Park, Calif., 1986).
  14. C. B. Carlisle, J. E. van der Laan, “ADEDIS acceptance test report,” (SRI International, Menlo Park, Calif., 1992).
  15. R. C. Harney, “Laser PRF considerations in differential absorption lidar applications,” Appl. Opt. 24, 3747–3750 (1983). [CrossRef]
  16. N. Menyuk, D. K. Killinger, “Assessment of relative error sources in IR DIAL measurement accuracy,” Appl. Opt. 22, 2690–2698 (1983). [CrossRef] [PubMed]
  17. R. E. Warren, “Adaptive Kalman–Bucy filter for differential absorption lidar time series data,” Appl. Opt. 26, 4755–4760 (1987). [CrossRef] [PubMed]
  18. E. E. Uthe, “Airborne CO2 DIAL measurement of atmospheric tracer gas concentration distributions,” Appl. Opt. 25, 2492–2498 (1986). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited