OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 34, Iss. 3 — Jan. 20, 1995
  • pp: 559–570

Improved Gaussian beam-scattering algorithm

James A. Lock  »View Author Affiliations

Applied Optics, Vol. 34, Issue 3, pp. 559-570 (1995)

View Full Text Article

Enhanced HTML    Acrobat PDF (232 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The localized model of the beam-shape coefficients for Gaussian beam-scattering theory by a spherical particle provides a great simplification in the numerical implementation of the theory. We derive an alternative form for the localized coefficients that is more convenient for computer computations and that provides physical insight into the details of the scattering process. We construct a fortran program for Gaussian beam scattering with the localized model and compare its computer run time on a personal computer with that of a traditional Mie scattering program and with three other published methods for computing Gaussian beam scattering. We show that the analytical form of the beam-shape coefficients makes evident the fact that the excitation rate of morphology-dependent resonances is greatly enhanced for far off-axis incidence of the Gaussian beam.

© 1995 Optical Society of America

Original Manuscript: March 25, 1994
Revised Manuscript: July 13, 1994
Published: January 20, 1995

James A. Lock, "Improved Gaussian beam-scattering algorithm," Appl. Opt. 34, 559-570 (1995)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Lord Rayleigh, “The incidence of light upon a transparent sphere of dimensions comparable with the wave length,” Proc. R. Soc. London Ser. A84, 25–46 (1910);Scientific Papers by Lord Rayleigh, J. N. Howard, ed. (Dover, New York, 1964), Vol. 5, paper 344, pp. 547–568. [CrossRef]
  2. J. V. Dave, “Scattering of visible light by large water spheres,” Appl. Opt. 8, 155–164 (1969). [CrossRef] [PubMed]
  3. W. J. Wiscombe, “Improved Mie scattering algorithms,” Appl. Opt. 19, 1505–1509 (1980). [CrossRef] [PubMed]
  4. C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983), Appendix A.
  5. P. W. Barber, D.-S. Y. Wang, M. B. Long, “Scattering calculations using a microcomputer,” Appl. Opt. 20, 1121–1123 (1981). [CrossRef] [PubMed]
  6. G. Gouesbet, G. Gréhan, B. Maheu, “Scattering of a Gaussian beam by a Mie scatter center using a Bromwich formalism,” J. Opt. (Paris) 16, 83–93 (1985). [CrossRef]
  7. G. Gouesbet, B. Maheu, G. Gréhan, “Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation,” J. Opt. Soc.Am.A 5, 1427–1443 (1988). [CrossRef]
  8. J. P. Barton, D. R. Alexander, S. A. Schaub, “Internal and near-surface electromagnetic fields for a spherical particle irradiated by a focused laser beam,” J. Appl. Phys. 64, 1632–1639 (1988). [CrossRef]
  9. C. Yeh, S. Colak, P. Barber, “Scattering of sharply focused beams by arbitrarily shaped dielectric particles: an exact solution,” Appl. Opt. 21, 4426–4433 (1982). [CrossRef] [PubMed]
  10. E. E. M. Khaled, S. C. Hill, P. W. Barber, D. Q. Chowdhury, “Near-resonance excitation of dielectric spheres with plane waves and off-axis Gaussian beams,” Appl. Opt. 31, 1166–1169 (1992). [CrossRef] [PubMed]
  11. E. E. M. Khaled, S. C. Hill, P. W. Barber, “Scattered and internal intensity of a sphere illuminated with a Gaussian beam,” IEEE Trans. Antennas Propag. 41, 295–303 (1993). [CrossRef]
  12. L. W. Davis, “Theory of electromagnetic beams,” Phys. Rev. A 19, 1177–1179 (1979). [CrossRef]
  13. J. P. Barton, D. R. Alexander, “Fifth-order corrected electromagnetic field components for a fundamental Gaussian beam,” J. Appl. Phys. 66, 2800–2802 (1989). [CrossRef]
  14. J. A. Lock, G. Gouesbet, “Rigorous justification of the localized approximation to the beam-shape coefficients in generalized Lorenz-Mie theory. I: On-axis beams,” J. Opt. Soc. Am. A 11, 2503–2515 (1994). [CrossRef]
  15. G. Gouesbet, J. A. Lock, “Rigorous justification of the localized approximation to the beam-shape coefficients in generalized Lorenz-Mie theory. II: Off-axis beams,” J. Opt. Soc. Am. A 11, 2516–2525 (1994). [CrossRef]
  16. G. Gréhan, B. Maheu, G. Gouesbet, “Scattering of laser beams by Mie scatter centers: numerical results using a localized approximation,” Appl. Opt. 25, 3539–3548 (1986). [CrossRef] [PubMed]
  17. G. Gouesbet, G. Gréhan, B. Maheu, “Localized interpretation to compute all the coefficients gmn in the generalized Lorenz–Mie theory,” J. Opt. Soc. Am. A 7, 998–1007 (1990). [CrossRef]
  18. J. A. Lock, “Contribution of high-order rainbows to the scattering of a Gaussian laser beam by a spherical particle,” J. Opt. Soc. Am. A 10, 693–706 (1993). [CrossRef]
  19. K. F. Ren, G. Gréhan, G. Gouesbet, “Localized approximation of generalized Lorenz-Mie theory: faster algorithm for computations of beam shape coefficients, gnm,” Part. Part. Syst. Charact. 9, 144–150 (1992). [CrossRef]
  20. G. Arfken, Mathematical Methods for Physicists, 3rd ed. (Academic, New York, 1985), Eq. (11.5).
  21. Ref. 20, Eq. (11.114).
  22. Ref. 20, Table 11.2
  23. G. B. Thomas, Calculus and Analytic Geometry, 3rd ed. (Addison-Wesley, Reading, Mass., 1964), Section 16-9.
  24. M. Abramowitz, I. A. Stegun, Handbook of Mathematical Functions (National Bureau of Standards, Washington, D.C., 1964), Tables 9.8–9.11.
  25. Ref. 24, Eq. (9.6.32).
  26. Ref. 20, Eqs. (11.129) and (11.133).
  27. Ref. 24, Tables 9.1–9.4.
  28. Ref. 24, Eq. (9.1.40).
  29. P. W. Barber, S. C. Hill, Light Scattering by Particles: Computational Methods (World Scientific, Singapore, 1990), p. 155.
  30. F. Slimani, G. Gréhan, G. Gouesbet, D. Allano, “Near-field Lorenz–Mie theory and its application to microholography,” Appl. Opt. 23, 4140–4148 (1984). [CrossRef] [PubMed]
  31. F. Guilloteau, G. Gréhan, G. Gouesbet, “Optical levitation experiments to assess the validity of the generalized Lorenz– Mie theory,” Appl. Opt. 31, 2942–2951 (1992). [CrossRef] [PubMed]
  32. J. A. Lock, E. A. Hovenac, “Diffraction of a Gaussian beam by a spherical obstacle,” Am. J. Phys. 61, 698–707 (1993). [CrossRef]
  33. J. P. Barton, D. R. Alexander, S. A. Schaub, “Internal fields of a spherical particle illuminated by a tightly focused laser beam: focal point positioning effects at resonance,” J. Appl. Phys. 65, 2900–2906 (1989). [CrossRef]
  34. J. P. Barton, D. R. Alexander, S. A. Schaub, “Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam,” J. Appl. Phys. 66, 4594–4602 (1989). [CrossRef]
  35. E. E. M. Khaled, S. C. Hill, P. W. Barber, “Internal electric energy in a spherical particle illuminated with a plane wave or off-axis Gaussian beam,” Appl. Opt. 33, 524–532 (1994). [CrossRef] [PubMed]
  36. E. A. Hovenac, J. A. Lock, “Calibration of the forward-scattering spectrometer probe: modeling scattering from a multimode laser beam,” J. Atmos. Oceanic Technol. 10, 518–525 (1993). [CrossRef]
  37. S. A. Schaub, Mountain Technical Center, Schuller International, Littleton, Col. 80127 (personal communication, March1992).
  38. T. Bear, “Continuous-wave laser oscillation in a Nd:YAG sphere,” Opt. Lett. 12, 392–394 (1987). [CrossRef]
  39. J.-Z. Zhang, D. H. Leach, R. K. Chang, “Photon lifetime within a droplet: temporal determination of elastic and stimulated Raman scattering,” Opt. Lett. 13, 270–272 (1988). [CrossRef] [PubMed]
  40. J.-Z. Zhang, G. Chen, R. K. Chang, “Pumping of stimulated Raman scattering by stimulated Brillouin scattering within a single liquid droplet: input laser line width effects,” J. Opt. Soc. Am. B 7, 108–115 (1990). [CrossRef]
  41. A. Messiah, Quantum Mechanics (Wiley, New York, 1968), Vol. 1, appendix B.II.6.
  42. H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981), Sect. 12.31.
  43. B. Maheu, G. Gréhan, G. Gouesbet, “Ray localization in Gaussian beams,” Opt. Commun. 70, 259–262 (1989). [CrossRef]
  44. C. C. Lam, P. T. Leung, K. Young, “Explicit asymptotic formulas for the positions, widths, and strengths of resonances in Mie scattering,” J. Opt. Soc. Am. B 9, 1585–1592 (1992). [CrossRef]
  45. S. Schiller, “Asymptotic expansion of morphological resonance frequencies in Mie scattering,” Appl. Opt. 32, 2181–2185 (1993). [CrossRef] [PubMed]
  46. Ref. 24, Sect. 10.4.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited