OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 34, Iss. 30 — Oct. 20, 1995
  • pp: 6925–6936

Lidar measurements taken with a large-aperture liquid mirror. 1. Rayleigh-scatter system

R. J. Sica, S. Sargoytchev, P. S. Argall, E. F. Borra, L. Girard, C. T. Sparrow, and S. Flatt  »View Author Affiliations


Applied Optics, Vol. 34, Issue 30, pp. 6925-6936 (1995)
http://dx.doi.org/10.1364/AO.34.006925


View Full Text Article

Enhanced HTML    Acrobat PDF (720 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A lidar system has been built to measure atmospheric-density fluctuations and the temperature in the upper stratosphere, the mesosphere, and the lower thermosphere, measurements that are important for an understanding of climate and weather phenomena. This lidar system, the Purple Crow Lidar, uses two transmitter beams to obtain atmospheric returns resulting from Rayleigh scattering and sodium-resonance fluorescence. The Rayleigh-scatter transmitter is a Nd:YAG laser that generates 600 mJ/pulse at the second-harmonic frequency, with a 20-Hz pulse-repetition rate. The sodium-resonance–fluorescence transmitter is a Nd:YAG-pumped ring dye laser with a sufficiently narrow bandwidth to measure the line shape of the sodium D2 line. The receiver is a 2.65-m-diameter liquid-mercury mirror. A container holding the mercury is spun at 10 rpm to produce a parabolic surface of high quality and reflectivity. Test results are presented which demonstrate that the mirror behaves like a conventional glass mirror of the same size. With this mirror, the lidar system’s performance is within 10% of theoretical expectations. Furthermore, the liquid mirror has proved itself reliable over a wide range of environmental conditions. The use of such a large mirror presented several engineering challenges involving the passage of light through the system and detector linearity, both of which are critical for accurate retrieval of atmospheric temperatures. These issues and their associated uncertainties are documented in detail. It is shown that the Rayleigh-scatter lidar system can reliably and routinely measure atmospheric-density fluctuations and temperatures at high temporal and spatial resolutions.

© 1995 Optical Society of America

History
Original Manuscript: November 9, 1994
Revised Manuscript: June 2, 1995
Published: October 20, 1995

Citation
R. J. Sica, S. Sargoytchev, P. S. Argall, E. F. Borra, L. Girard, C. T. Sparrow, and S. Flatt, "Lidar measurements taken with a large-aperture liquid mirror. 1. Rayleigh-scatter system," Appl. Opt. 34, 6925-6936 (1995)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-34-30-6925

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you are accessing the full text through a member bundle, please use the Enhanced HTML link to gain access to the citation lists and other restricted features. Note that accessing both the PDF and HTML versions of an article will count as only one download against your account.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you are accessing the full text through a member bundle, please use the Enhanced HTML link to gain access to the citation lists and other restricted features. Note that accessing both the PDF and HTML versions of an article will count as only one download against your account.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you wish to use one of your free member downloads to view the figures, click "Enhanced HTML" above and access the figures from the article itself or from the navigation tab.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you are accessing the full text through a member bundle, please use the Enhanced HTML link to gain access to the citation lists and other restricted features. Note that accessing both the PDF and HTML versions of an article will count as only one download against your account.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited