## Electromagnetic scattering from a multilayered sphere located in an arbitrary beam

Applied Optics, Vol. 34, Issue 30, pp. 7113-7124 (1995)

http://dx.doi.org/10.1364/AO.34.007113

Enhanced HTML Acrobat PDF (263 KB)

### Abstract

A solution is given for the problem of scattering of an arbitrary shaped beam by a multilayered sphere. Starting from Bromwich potentials and using the appropriate boundary conditions, we give expressions for the external and the internal fields. It is shown that the scattering coefficients can be generated from those established for a plane-wave illumination. Some numerical results that describe the scattering patterns and the radiation-pressure behavior when an incident Gaussian beam or a plane wave impinges on a multilayered sphere are presented.

© 1995 Optical Society of America

**History**

Original Manuscript: June 3, 1994

Revised Manuscript: May 16, 1995

Published: October 20, 1995

**Citation**

F. Onofri, G. Gréhan, and G. Gouesbet, "Electromagnetic scattering from a multilayered sphere located in an arbitrary beam," Appl. Opt. **34**, 7113-7124 (1995)

http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-34-30-7113

Sort: Year | Journal | Reset

### References

- L. Lorenz, “Lysbevaegelsen i og uden for en hal plane lysbôlger belyst kulge,” Vidensk. Selk. Skr. 6, 1–62 (1898).
- G. Mie, “Beitrâge zur optik truber Medien, speziell kolloidaler Metallosungen,” Ann. Phys. 25, 377–452 (1908). [CrossRef]
- P. Debye, “Der Lichtdruck auf Kugeln von beliebigem Material,” Ann. Phys. 30, 57–136 (1909). [CrossRef]
- J. A. Stratton, Electromagnetic Theory (McGraw-Hill, New York, 1941).
- H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1957).
- M. Kerker, The Scattering of Light, and Other Electromagnetic Radiations (Academic, New York, 1969).
- C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-Interscience, New York, 1983).
- G. Gouesbet, B. Maheu, G. Gréhan, “Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation” J. Opt. Soc. Am. A 5, 1427–1443 (1988). [CrossRef]
- G. Gouesbet, G. Gréhan, B. Maheu, “Generalized Lorenz–Mie theory and applications to optical sizing,” in Combustion Measurements, N. Chigier, ed. (Hemisphere, Washington, D.C., 1991), Chap. 10.
- K. F. Ren, G. Gréhan, G. Gouesbet, “Laser sheet scattering by spherical particles,” Part. Part. Syst. Charact. 10, 146–151 (1993). [CrossRef]
- K. F. Ren, G. Gréhan, G. Gouesbet, “Evaluation of laser sheet beam shape coefficients in generalized Lorenz–Mie theory by using a localized approximation,” J. Opt. Soc. Am. A 11, 2072–2079 (1994). [CrossRef]
- M. I. Angelova, B. Pouligny, G. M. Martinot-Lagarde, G. Gréhan, G. Gouesbet, “Stressing phospholipid membranes using mechanical effects of light,” Prog. Colloid Polym. Sci. (to be published).
- G. Gréhan, G. Gouesbet, A. Naqwi, F. Durst, “Particle trajectory effects in phase Doppler systems: computations and experiments,” Part. Part. Syst. Charact. 10, 332–338 (1993). [CrossRef]
- F. Onofri, G. Gréhan, G. Gouesbet, T.-H. Xu, G. Brenn, C. Tropea, “Phase-Doppler anemometry with dual burst technique for particle refractive index measurements,” presented at the Seventh International Symposium on Applications of Laser Techniques to Fluid Mechanics, Lisbon, 11–14 July 1994.
- M. Schneider, E. D. Hirleman, “Influence of internal refractive index gradients on size measurements of spherically symmetric particles by phase Doppler anemometry,” Appl. Opt. 33, 2379–2389 (1994). [CrossRef] [PubMed]
- A. L. Aden, M. Kerker, “Scattering of electromagnetic waves from two concentric spheres,” J. Appl. Phys. 22, 1242–1246 (1951). [CrossRef]
- L. Kai, P. Massoli, “Scattering of electromagnetic-plane waves by radially inhomogeneous spheres: a finely stratified sphere model,” Appl. Opt. 33, 501–511 (1994). [CrossRef] [PubMed]
- E. M. Khaled, S. C. Hill, P. W. Barber, “Light scattering by a coated sphere illuminated by a Gaussian beam,” Appl. Opt. 33, 3308–3314 (1994). [CrossRef] [PubMed]
- J. A. Lock, “Improved Gaussian beam-scattering algorithm,” Appl. Opt. 34, 559–570 (1995). [CrossRef] [PubMed]
- G. Gouesbet, G. Gréhan, B. Maheu, “Expressions to compute the coefficients gnm in the generalized Lorenz–Mie theory using finite series,” J. Opt. (Paris) 19, 35–48 (1988). [CrossRef]
- G. Gouesbet, G. Gréhan, B. Maheu, “A localized interpretation to compute all the coefficients gnm in the generalized Lorenz–Mie theory,” J. Opt. Soc. Am. A 7, 998–1007 (1990). [CrossRef]
- G. Gouesbet, J. A. Lock, “Rigorous justification of the localized approximation to the beam shape coefficients in the generalized Lorenz–Mie theory. I. Off-axis beams,” J. Opt. Soc. Am. A 11, 2503–2515 (1994). [CrossRef]
- J. A. Lock, G. Gouesbet, “Rigorous justification of the localized approximation to the beam shape coefficients in the generalized Lorenz-Mie theory. II. On-axis beams,” J. Opt. Soc. Am. A 11, 2516–2525 (1994). [CrossRef]
- Z. S. Wu, Y. P. Wang, “Electromagnetic scattering for multilayered sphere: recursive algorithms,” Radio Sci. 26, 1393–1401 (1991). [CrossRef]
- R. Bhandari, “Scattering coefficients for a multilayered sphere: analytic expressions and algorithms,” Appl. Opt. 24, 1960–1967 (1985). [CrossRef] [PubMed]
- L. Kai, P. Massoli, A. D’Alessio, “Studying inhomogeneities of spherical particles by light scattering,” presented at the Third International Congress on Optical Partical Sizing, Yokohama, Japan, 1993.
- K. F. Ren, G. Gréhan, G. Gouesbet, “Radiation pressure forces exerted on a particle arbitrarily located in a Gaussian beam by using the GLMT, and associated resonances effects,” Opt. Commun. 108, 343–353 (1994). [CrossRef]
- A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970). [CrossRef]

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article | Next Article »

OSA is a member of CrossRef.