OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 34, Iss. 31 — Nov. 1, 1995
  • pp: 7395–7409

Photon-measurement density functions. Part I: Analytical forms

Simon R. Arridge  »View Author Affiliations


Applied Optics, Vol. 34, Issue 31, pp. 7395-7409 (1995)
http://dx.doi.org/10.1364/AO.34.007395


View Full Text Article

Enhanced HTML    Acrobat PDF (1533 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This paper addresses the problem of tomographic reconstruction of absorption and scattering parameters in the optical region from measurements of transilluminated light. Specifically, the question of the sensitivity of different measurement schemes on the boundary of an object to perturbations of the optical parameters within the object are addressed. The concept of a photon-sampling volume [Appl. Opt. 33, 448 (1994)] and a photon-hitting density [Appl. Opt. 32, 448 (1993)] is extended to a photon-measurement density function (PMDF). The PMDF is derived from the Green’s function of the diffusion equation and can be expressed for measurements such as the time-varying intensity, integrated intensity, temporal moments, and phase shift, as well as for both absorption and diffusion perturbations. Closed-form solutions are given for a number of these functions in infinite space, half-space, and slab geometries. Example results are given in terms of three-dimensional images.

© 1995 Optical Society of America

History
Original Manuscript: August 26, 1994
Revised Manuscript: June 19, 1995
Published: November 1, 1995

Citation
Simon R. Arridge, "Photon-measurement density functions. Part I: Analytical forms," Appl. Opt. 34, 7395-7409 (1995)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-34-31-7395


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. R. Arridge, M. Cope, P. van der Zee, P. J. Hillson, D. T. Delpy, “Visualisation of the oxygenation state of brain and muscle in newborn infants by near infra-red transillumination,” in Information Processing in Medical Imaging, S. L. Bacharach, ed. (Martinus Nijhoff, Amsterdam, 1985), pp. 155–176.
  2. S. R. Arridge, P. van der Zee, D. T. Delpy, M. Cope, “Aspects of clinical infra red absorption imaging,” in Medical Images: Formation, Handling, and Evaluation, Vol. 98 of NATO Advanced Study Institute Imaging SeriesF A. Todd Pokropek, M. A. Viergever, eds., (Springer-Verlag, Heidelberg, Germany, 1992), pp. 407–418.
  3. S. R. Arridge, P. van der Zee, M. Cope, D.T. Delpy “Reconstruction methods for infrared absorption imaging,” Time-Resolved Spectroscopy and Imaging in Tissues, B. Chance, A. Katzir, eds., Proc. Soc. Photo-Opt. Instrum. Eng. 1431, 204–215 (1991).
  4. S. R. Arridge, M. Schweiger, D. T. Delpy, “Iterative reconstruction of near infra-red absorption images,” in Inverse Problems in Scattering and Imaging, M.A. Fiddy, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 1767, 372–383 (1982).
  5. G. Jarry, S. Ghesquiere, J. M. Maarek, S. Debray, Bui-Mong-Hung, D. Laurent, “Imaging mammalian tissues and organs using laser collimated transillumination,” J. Biomed. Eng. 6, 70–74 (1984). [CrossRef] [PubMed]
  6. P. C. Jackson, P. H. Stevens, J. H. Smith, D. Kean, H. Key, P. N. T. Wells, “The development of a system for transillumination computed tomography,” Br. J. Rad. 60, 375–380 (1987). [CrossRef]
  7. M. Tamura, Y. Nomura, O. Hazeki, “Laser tissue spectroscopy—near-infrared CT,” Rev. Laser Eng. (Japan) 15, 74–82 (1987).
  8. J. R. Singer, F. A. Grünbaum, P. D. Kohn, J. P. Zubelli, “Imaging reconstruction of the interior of bodies that diffuse radiation,” Science 248, 990–993 (1990). [CrossRef] [PubMed]
  9. F. A. Grünbaum, P. D. Kohn, G. A. Latham, J. R. Singer, J. P. Zubelli, “Diffuse tomography,” in Time Resolved Spectroscopy and Imaging in Tissues, B. Chance, A. Katzir, eds., Proc. Soc. Photo-Opt. Instrum. Eng. 1431, 232–238 (1991).
  10. I. Oda, Y. Ito, H. Eda, T. Tamura, M. Takada, R. Abumi, K. Nagai, K. Nakagawa, M. Tamura, “Non-invasive haemoglobin oxygenation monitor and computed tomography by NIR spectrophotometry,” in Time-Resolved Spectroscopy and Imaging in Tissues, B. Chance, A. Katzir, eds., Proc. Soc. Photo-Opt. Instrum. Eng. 1431, 284–293 (1991).
  11. R. Berg, S. Andersson-Engels, O. Jarlman, S. Svanberg, “Time-resolved transillumination for medical diagnostics,” in Time-Resolved Spectroscopy and Imaging in Tissues, B. Chance, A. Katzir, eds., Proc. Soc. Photo-Opt. Instrum. Eng. 1431, 110–119 (1991).
  12. J. Haselgrove, J. Leigh, C. Lee, N.-G. Wang, M. Maris, B. Chance, “Monte Carlo and diffusion calculations of photon migration in non-infinite highly scattering media,” in Time Resolved Spectroscopy and Imaging in Tissues, B. Chance, A. Katzir, eds., Proc. Soc. Photo-Opt. Instrum. Eng. 1431, 30–41 (1991).
  13. J. S. Wyatt, M. Cope, D. T. Delpy, S. Wray, E. O. R. Reynolds, “Quantitation of cerebral oxygenation and haemodynamics in sick newborn infants by near infrared spectroscopy,” Lancet ii, 1063–1066 (1986). [CrossRef]
  14. A. D. Edwards, J. S. Wyatt, C. E. Richardson, D. T. Delpy, M. Cope, E. O. R. Reynolds, “Cotside measurement of cerebral blood flow in ill newborn infants by near infrared spectroscopy,” Lancet ii, 770–771 (1988). [CrossRef]
  15. J. S. Wyatt, M. Cope, D. T. Delpy, C. E. Richardson, A. D. Edwards, S. C. Wray, E. O. R. Reynolds, “Quantitation of cerebral blood volume in newborn infants by near infra-red spectroscopy,” J. Appl. Physiol. 68, 1086–1091 (1990). [PubMed]
  16. J. E. Brazy, D. V. Lewis, M. H. Mitnick, F. F. Jöbsis van der Vliet, “Noninvasive monitoring of cerebral oxygenation in preterm infants: preliminary observations,” Paediatrics 75, 217–225 (1985).
  17. M. Ferrari, E. Zanette, I. Giannini, G. Sideri, C. Fieschi, A. Carpi, “Effects of carotid artery compression test on regional cerebral blood volume, haemoglobin oxygen saturation and cytochrome-c-oxidase redox level in cerebrovascular patients ” in Oxygen Transport to Tissue VIII, I. A. Longmuir, ed. (Plenum, New York, 1986), pp. 213–222. [CrossRef]
  18. N. B. Hampson, C. A. Piantadosi, “Near infrared monitoring of human skeletal muscle oxygenation during forearm ischaemia,” J. Appl. Physiol. 64, 2449–2457 (1988). [PubMed]
  19. T. R. Cheatle, L. A. Potter, M. Cope, D. T. Delpy, P. D. Coleridge-Smith, J. H. Scurr, “Near infra-red spectroscopy in peripheral vascular disease,” Br. J. Surg. 78, 405–408 (1991). [CrossRef] [PubMed]
  20. D. T. Delpy, M. Cope, P. van der Zee, S. R. Arridge, S. Wray, J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1433–1442 (1988). [CrossRef] [PubMed]
  21. B. Chance, J. S. Leigh, H. Miyake, D. S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufman, W. Levy, M. Young, P. Cohne, H. Yoshioka, R. Boretsky, “Comparison of time-resolved and unresolved measurements of deoxyhemoglobin in brain,” Proc. Natl. Acad. Sci. USA 85, 4971–4975 (1988). [CrossRef] [PubMed]
  22. B. Chance, M. Maris, J. Sorge, M. Z. Zhang, “A phase modulation system for dual wavelength difference spectroscopy of haemoglobin deoxygenation in tissue,” in Time-Resolved Laser Spectroscopy in Biochemistry II, J. R. Lakowicz, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 1204, 481–491 (1990).
  23. J. R. Lakowicz, K. Berndt, “Frequency domain measurement of photon migration in tissues,” Chem. Phys. Lett. 166, 246–252 (1990). [CrossRef]
  24. M. S. Patterson, J. D. Moulton, B. C. Wilson, B. Chance, “Applications of time resolved light scattering measurements to photodynamic therapy dosimetry,” in Photodynamic Therapy: Mechanisms, II, T. J. Dougherty, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 1203, 62–75 (1990).
  25. S. R. Arridge, M. Cope, D. T. Delpy, “Theoretical basis for the determination of optical pathlengths in tissue: temporal and frequency analysis,” Phys. Med. Biol. 37, 1531–1560 (1992). [CrossRef] [PubMed]
  26. B. C. Wilson, G. Adam, “A Monte-Carlo model for the absorption and flux distribution of light in tissue,” Med. Phys. 10, 824–830 (1983). [CrossRef] [PubMed]
  27. P. van der Zee, D. T. Delpy, “Simulation of the point-spread function for light in tissue,” Adv. Exp. Med. Biol. 215, 179–192 (1987).
  28. S. T. Flock, M. S. Patterson, B. C. Wilson, D. R. Wyman, “Monte Carlo modelling of light propagation in highly scattering tissues—I: Model predictions and comparison with diffusion theory,” IEEE Trans. Biomed. Eng. 36, 1162–1168 (1989). [CrossRef] [PubMed]
  29. R. F. Bonner, R. Nossal, R. Havlin, G. H. Weiss, “Model for photon migration in turbid biological media,” J. Opt. Soc. Am. A 4, 423–432 (1987). [CrossRef] [PubMed]
  30. M. S. Patterson, B. Chance, B. C. Wilson, “Time-resolved reflectance and transmittance for the noninvasive measurement of tissue optical properties,” Appl. Opt. 28, 2331–2336 (1989). [CrossRef] [PubMed]
  31. S. R. Arridge, M. Schweiger, “The use of multiple data types in time-resolved optical absorption and scatter tomography (TOAST),” in Mathematical Methods in Medical Imaging II, D. C. Wilson, J. N. Wilson, eds., Proc. Soc. Photo-Opt. Instrum. Eng. 2035, 218–229 (1993).
  32. E. M. Sevik, B. Chance, “Photon migration in a model of the head measured using time and frequency domain techniques: potentials of spectroscopy and imaging,” in Time-Resolved Spectroscopy and Imaging of Tissues, B. Chance, A. Katzir, eds., Proc. Soc. Photo-Opt. Instrum. Eng. 1431, 84–96 (1991).
  33. M. S. Patterson, J. D. Moulton, B. C. Wilson, K. E. Berndt, J. R. Lakowicz, “Frequency-domain reflectance for the determination of the scattering and optical properties of tissue,” Appl. Opt. 30, 4474–4476 (1991). [CrossRef] [PubMed]
  34. E. M. Sevick, C. L. Burch, J. K. Frisoli, M. L. Johnson, K. Nowaczyk, H. Szmacinski, J. R. Lakowicz, “The physical basis of photon migration imaging using frequency–domain measurements,” in Medical Optical Tomography: Functional Imaging and Monitoring, Vol. 11 of SPIE Institute Series, G. Müller, ed. (SPIE Press, Bellingham, Wash., 1993), pp. 485–512.
  35. E. M. Sevick, C. L. Burch, J. K. Frisoli, J. R. Lakowicz, “Localization of absorbers in scattering media by use of frequency–domain measurements of time-dependent photon migration,” Appl. Opt. 33, 3562–3571 (1994). [CrossRef] [PubMed]
  36. J. C. Schotland, J. C. Haselgrove, J. S. Leigh, “Photon hitting density,” Appl. Opt. 32, 448–453 (1993). [CrossRef] [PubMed]
  37. H. L. Graber, J. Chang, J. Lubowsky, R. Aronson, R. L. Barbour, “Near infrared absorption imaging of dense scattering media by steady-state diffusion tomography,” in Photon Migration and Imaging in Random Media, R. R. Alfano, B. Chance, eds., Proc. Soc. Photo-Opt. Instrum. Eng. 1888, 372–386 (1993).
  38. A. H. Gandjbakhche, R. Nossal, R. F. Bonner, “Resolution limits for optical transillumination of abnormalities deeply embedded in tissues,” Med. Phys. 21, 185–191 (1994). [CrossRef] [PubMed]
  39. A. H. Gandjbakhche, R. Nossal, R. F. Bonner, “Theoretical study of resolution limits for time-resolved imaging of human breast,” in Advances in Laser and Light Spectroscopy to Diagnose Cancer and Other Diseases, R. R. Alfano, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 2135, 176–185 (1994).
  40. J. P. Kaltenbach, M. Kaschke, “Frequency- and time-domain modelling of light transport in random media,” in Medical Optical Tomography: Functional Imaging and Monitoring, G. J. Muller, B. Chance, R. R. Alfano, S. R. Arridge, J. Beuthan, E. Gratton, M. Kaschke, B. R. Masters, S. Svanberg, P. van der Zee, eds. (SPIE Press, Bellingham, Wa., 1993), pp. 65–86.
  41. R. A. J. Groenhuis, H. A. Ferwerda, J. J. Ten Bosch, “Scattering and absorption of turbid materials determined from reflection measurements. 1: Theory,” Appl. Opt. 22, 2456–2462 (1983); R. A. J. Groenhuis, J. J. Ten Bosch, H. A. Ferwerda, “Scattering and absorption of turbid materials determined from reflection measurements. 2: Measuring method and calibration,” Appl. Opt. 22, 2463–2467 (1983). [CrossRef] [PubMed]
  42. A. B. Weglein, A. J. Devaney, “The inverse source problem in the presence of external sources,” in Inverse Problems in Scattering and Imaging, M. Fiddy, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 1767, 170–176 (1992).
  43. J. G. Webster, ed., Electrical Impedance Tomography (Adam Hilger, Bristol, UK, 1990).
  44. B. Chance, “Multielement phased arrays for phase modulation imaging,” in Photon Migration and Imaging in Random Media and Tissues, R. R. Alfano, B. Chance, eds., Proc. Soc. Photo-Opt. Instrum. Eng. 1888, 254–259 (1993).
  45. S. R. Arridge, M. Schweiger, “Reconstruction in optical tomography using MRI based prior knowledge,” in Information Processing in Medical Imaging ’95, Y. Bizais, C. Barillot, R. di Paola, eds. (Kluwer Academic, Dordrecht, 1995), pp. 77–88.
  46. The program C++ used to generate the photon-measurement density functions, as described in Subsection 6.A is available by writing to S. Arridge, Department of Computer Science, University College of London, London WC1E 6BT, England, or by e-mail at arridge@CS.ucl.ac.uk.
  47. R. A. Robb, C. Barillot, “Interactive display and analysis of 3-D medical images,” IEEE Trans. Med. Imag. 8, 217–226 (1989). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited