OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 34, Iss. 4 — Feb. 1, 1995
  • pp: 597–603

Developed profile of holographically exposed photoresist gratings

Bernardo de A. Mello, Ivan F. da Costa, Carlos R. A. Lima, and Lucila Cescato  »View Author Affiliations


Applied Optics, Vol. 34, Issue 4, pp. 597-603 (1995)
http://dx.doi.org/10.1364/AO.34.000597


View Full Text Article

Enhanced HTML    Acrobat PDF (532 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A simulation of the profile of holographically recorded structures in photoresists is performed. In addition to its simplicity this simulation can be used to take into account the effects that arise from exposure, photosensitization, development, and resolution of positive photoresists. We analyzed the effects of isotropy of wet development, nonlinearity of the photoresist response curve, background light, and standing waves produced by reflection at the film–substrate interface by using this simulation, and the results agree with the experimentally recorded profiles.

© 1995 Optical Society of America

History
Original Manuscript: May 14, 1993
Revised Manuscript: May 24, 1994
Published: February 1, 1995

Citation
Bernardo de A. Mello, Ivan F. da Costa, Carlos R. A. Lima, and Lucila Cescato, "Developed profile of holographically exposed photoresist gratings," Appl. Opt. 34, 597-603 (1995)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-34-4-597


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. A. Bartolini, “Characteristics of relief phase holograms recorded in photoresists,” Appl. Opt. 13, 129–139 (1974). [CrossRef] [PubMed]
  2. S. Austin, F. T. Stone, “Fabrication of thin periodic structures in photoresist: a model,” Appl. Opt. 15, 1071–1074 (1976). [CrossRef] [PubMed]
  3. R. R. Gerke, I. V. Golubenko, T. G. Dubrovina, G. M. Savitski, “Investigation of the reflection properties of holographic diffraction gratings with a symmetrical line profile,” Opt. Spectrosc. (USSR) 58, 808–810 (1986).
  4. K. Yokomori, “Dielectric surface-relief gratings with high diffraction efficiency,” Appl. Opt. 23, 2303–2310 (1984). [CrossRef] [PubMed]
  5. Y. Ono, Y. Kimura, Y. Ohta, N. Nishida, “Antireflection effect in ultrahigh spatial-frequency holographic relief gratings,” Appl. Opt. 26, 1142–1146 (1987). [CrossRef] [PubMed]
  6. P. Langois, R. Beaulieu, “Phase relief gratings with conic section profile used in the production of multiple beams,” Appl. Opt. 29, 3434–3439 (1990). [CrossRef] [PubMed]
  7. W. Stork, N. Streibl, H. Haidner, P. Kipfer, “Artificial distributed-index media fabricated by zero-order gratings,” Opt. Lett. 16, 1921–1923 (1991). [CrossRef] [PubMed]
  8. R. E. Jewett, P. I. Hagouel, T. Van Duzer, “Line-profile resist development simulation techniques,” Polym. Eng. Sci. 17, 381–384 (1977). [CrossRef]
  9. W. G. Oldham, S. N. Nandgaonkar, A. R. Neureuther, M. O’Toole, “A general simulator for VLSI lithography and etching processes: Part I. Application to projection lithography,” IEEE Trans. Electron Devices ED-26, 717–722 (1979). [CrossRef]
  10. C. A. Mack, “Development of positive photoresists,” J. Electrochem. Soc. 134, 148–152 (1987). [CrossRef]
  11. F. H. Dill, W. Hornberger, P. S. Hauge, J. M. Shaw, “Characterization of positive photoresist,” IEEE Trans. Electron Devices ED-22, 445–452 (1975). [CrossRef]
  12. L. Mashev, S. Tonchev, “Formation of holographic diffraction gratings in photoresist,” Appl. Phys. A 26, 143–149 (1981) [CrossRef]
  13. AZ-1400 and AZ-1350 photoresists (Shipley, Newton, Mass., 1984).
  14. L. Cescato, J. Frejlich, “Real-time optical techniques for monitoring of etching process,” in Trends in Electrochemistry (Council of Scientific Research Integration/Research Trends, Sreekanteswaran, Trivandrum, India, 1992), 201–213.
  15. D. A. Kessler, J. Koplic, H. Levine, “Geometrical model of interface evolution. II. Numerical simulation,” Phys. Rev. A 30, 3163–3174 (1984). [CrossRef]
  16. S. Asaumi, H. Nakane, “Mechanism of photoresist resolution improvement by pre-exposure treatment,” J. Electrochem. Soc. 137, 2546–2549 (1990). [CrossRef]
  17. F. H. Dill, A. Neureuther, J. Tuttle, E. J. Walker, “Modeling projection printing of positive photoresist,” IEEE Trans. Electron Devices ED-22, 456–464 (1975). [CrossRef]
  18. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968), Chap. 7, p. 157.
  19. R. G. Brandes, R. K. Curran, “Modulation transfer function,” Appl. Opt. 10, 2101–2103 (1971). [CrossRef] [PubMed]
  20. M. S. Sthel, C. R. A. de Lima, L. Cescato, “Photoresist resolution measurement during the exposure process,” Appl. Opt. 30, 5152–5156 (1991). [CrossRef] [PubMed]
  21. A. C. Livanos, A. Katzir, J. B. Shellan, A. Yariv, “Linearity and enhanced sensitivity of the Shipley AZ-1350B photoresist,” Appl. Opt. 16, 1633–1635 (1977). [CrossRef] [PubMed]
  22. L. Cescato, G. F. Mendes, J. Frejlich, “Stabilized holographic recording using the residual real-time effect in a positive photoresist,” Opt. Lett. 12, 982–983 (1987). [CrossRef] [PubMed]
  23. S. H. Zaidi, S. R. J. Brueck, “High aspect-ratio holographic photoresist gratings,” Appl. Opt. 27, 2999–3002 (1988). [CrossRef] [PubMed]
  24. W-T. Tsang, S. Wang, “Simultaneous exposure and development technique for making gratings on positive photoresist,” Appl. Phys. Lett. 24, 196–199 (1974). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited