OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 34, Iss. 5 — Feb. 10, 1995
  • pp: 904–908

Spatial coherence of synchrotron radiation

R. Coïsson  »View Author Affiliations

Applied Optics, Vol. 34, Issue 5, pp. 904-908 (1995)

View Full Text Article

Enhanced HTML    Acrobat PDF (108 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The spatial coherence properties of a monochromatic component of synchrotron radiation from an insertion device in the Fraunhofer limit are analyzed in the general case when the coherence distance is comparable with the beam width, expressing them by simple products and convolutions of Fourier transforms and autocorrelations on the single-electron field amplitude and the electron-beam position and angular distributions. In particular, the Gaussian approximation is discussed, in which case the far-field amplitude satisfies the Schell condition 1its statistical properties can be described by a coherence factor depending only on the difference of the reciprocal space coordinates2, and this discussion leads to simple estimates of the coherence widths. The coherence widths deviate from the Van Cittert–Zernike values when one or more of the phase space widths of the electron beam are close to (or smaller than) the diffraction limit.

© 1995 Optical Society of America

Original Manuscript: September 7, 1993
Revised Manuscript: May 3, 1994
Published: February 10, 1995

R. Coïsson, "Spatial coherence of synchrotron radiation," Appl. Opt. 34, 904-908 (1995)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. See, for example, Handbook on Synchrotron Radiation, E. E. Koch, ed. (North-Holland, Amsterdam, 1983), Vols. 1–4.
  2. K.-J. Kim, “A new formulation of synchrotron radiation optics using the Wigner distribution,” in Insertion Devices for Synchrotron Sources, I. Lindau, R. Tatchyn, eds., Proc. Soc. Photo-Opt. Instrum. Eng.582, 2–9 (1986).
  3. S. Bartalucci, “An overview of programs for calculation of undulator radiation spectra,” in Insertion Devices for Synchrotron Sources, I. Lindau, R. Tatchyn, eds., Proc. Soc. Photo-Opt. Instrum. Eng.582, 32–37 (1986).
  4. M. Cornacchia, H. Winick, presented at the Fifteenth International Conference on High Energy Acceleration, Hamburg, 1992.
  5. D. Attwood, K. Halbach, K.-J. Kim, “Tunable coherent x-rays,” Science 228, 1265–1272 (1985). [CrossRef] [PubMed]
  6. D. Attwood, “New opportunities at soft X-ray wavelengths,” Phys. Today 45 (8), 24–31 (1992). [CrossRef]
  7. A. M. Kondratenko, A. N. Skrinsky “Use of radiation of electron storage rings in X-ray holography of objects,” Opt. Spectrosc. (USSR) 42, 189–192 (1977);Opt. Spektrosk. 42, 338–344 (1975).
  8. D. F. Alferov, Yu. A. Bashmakov, E. G. Bessonov, “Theory of undulator radiation,” Zh. Tekh. Fiz. 48, 1592–1597, 1598–1606 (1978);Phys. Tech. Phys. 23, 902–904, 905–909 (1978);E. G. Bessonov, “On the space–time coherence of undulator radiation,” Zh. Tekh. Fiz. 58, 498–505 (1988).
  9. W. H. Carter, E. Wolf, “Coherence and radiometry with quasihomogeneous planar sources,” J. Opt. Soc. Am. 67, 785–796 (1977);J. W. Goodman, Proc. IEEE 53, 1688 (1965). [CrossRef]
  10. J. W. Goodman, Statistical Optics (Wiley, New York, 1985), Chap. 5.
  11. A. Friberg, E. Wolf, “Reciprocity relations with partially coherent sources,” Opt. Acta 30, 1417–1435 (1983). [CrossRef]
  12. R. Coïsson, “Source and far field coherence functions,” Note SPS/ABM/RC 81-11 (CERN, Geneva, 1981).
  13. A. Walther, “Radiometry and coherence,” J. Opt. Soc. Am. 58, 1256–1259 (1968). [CrossRef]
  14. A. Papoulis, “Ambiguity function in Fourier optics,” J. Opt. Soc. Am. 64, 779–788 (1974). [CrossRef]
  15. R. Coïsson, R. P. Walker, “Phase space distribution of brilliance of undulator sources,” in Insertion Devices for Synchrotron Sources, I. Lindau, R. Tatchyn, eds., Proc. Soc. Photo-Opt. Instrum. Eng.582, 24–29 (1986).
  16. R. Coïsson, “Effective phase space widths of undulator radiation,” Opt. Eng. 27, 250–252 (1988).
  17. R. Coïsson, B. Diviacco, “Practical estimates of peak flux and brilliance of undulator radiation on even harmonics,” Appl. Opt. 27, 1376–1377 (1988). [CrossRef] [PubMed]
  18. G. Grübel, J. Als-Nielsen, D. Abernathy, G. Vignaud, S. Brauer, G. B. Stephenson, S. G. J. Mochrie, M. Sutton, I. K. Robinson, R. Fleming, R. Pindak, S. Dierker, J. F. Leg-rand, “Scattering with coherent X-rays,” ESRF Newsletter (European Synchrotron Radiation Facility, Grenoble, France, 1994), pp. 14–15.
  19. L. Mandel, “Concept of cross-spectral purity in coherence theory,” J. Opt. Soc. Am. 51, 1342–1350 (1961). [CrossRef]
  20. A. Papoulis, Probability, Random Variables and Stochastic Processes (McGraw-Hill, New York, 1968), Chap. 12.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited