OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 34, Iss. 6 — Feb. 20, 1995
  • pp: 977–982

Calibration of light forces in optical tweezers

Harald Felgner, Otto Müller, and Manfred Schliwa  »View Author Affiliations


Applied Optics, Vol. 34, Issue 6, pp. 977-982 (1995)
http://dx.doi.org/10.1364/AO.34.000977


View Full Text Article

Enhanced HTML    Acrobat PDF (127 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Axial and lateral optical-trapping forces on polystyrene and glass microbeads are measured as a function of sphere size and axial trapping position inside a specimen chamber containing water. A strong decrease of the light forces with increasing distance of the trapping position from the coverslip of the chamber is found. It is shown that beyond a certain maximal distance the trapping efficiency decreases substantially but trapping becomes possible in different, axial positions. We consider these effects to be accounted for by spherical aberration of the focused laser beam.

© 1995 Optical Society of America

History
Original Manuscript: August 1, 1994
Published: February 20, 1995

Citation
Harald Felgner, Otto Müller, and Manfred Schliwa, "Calibration of light forces in optical tweezers," Appl. Opt. 34, 977-982 (1995)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-34-6-977


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986). [CrossRef] [PubMed]
  2. A. Ashkin, J. M. Dziedzic, T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature (London) 330, 769–771 (1987). [CrossRef]
  3. A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61, 569–582 (1992). [CrossRef] [PubMed]
  4. K. Visscher, G. J. Brakenhoff, “Theoretical study of optically induced forces on spherical particles in a single beam trap II: Mie scatterers,” Optik 90, 57–60 (1992).
  5. J. P. Barton, D. R. Alexander, S. A. Schaub, “Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam,” J. Appl. Phys. 66, 4594–4602 (1989). [CrossRef]
  6. K. Visscher, G. J. Brakenhoff, “Theoretical study of optically induced forces on spherical particles in a single beam trap I: Rayleigh scatterers,” Optik 89, 174–180 (1992).
  7. W. H. Wright, G. J. Sonek, M. W. Berns, “Radiation trapping forces on microspheres with optical tweezers,” Appl. Phys. Lett. 63, 715–717 (1993). [CrossRef]
  8. A. Ashkin, K. Schütze, J. M. Dziedzic, U. Euteneuer, M. Schliwa, “Force generation of organelle transport measured in vivo by an infrared laser trap,” Nature (London) 348, 346–348 (1990). [CrossRef]
  9. S. C. Kuo, M. P. Sheetz, “Force of single kinesin molecules measured with optical tweezers,” Science 260, 232–234 (1993). [CrossRef] [PubMed]
  10. K. Svoboda, C. F. Schmidt, B. J. Schnapp, S. M. Block, “Direct observation of kinesin stepping by optical trapping interferometry,” Nature (London) 365, 721–727 (1993). [CrossRef]
  11. J. T. Finer, R. M. Simmons, J. A. Spudich, “Single myosin molecule mechanics: piconewton forces and nanometre steps,” Nature (London) 368, 113–119 (1994). [CrossRef]
  12. W. H. Wright, G. J. Sonek, M. W. Berns, “Parametric study of the forces on microspheres held by optical tweezers,” Appl. Opt. 33, 1735–1748 (1994). [CrossRef] [PubMed]
  13. H. Felgner, “Die LaserPinzette: Charakterisierung und Eichung der Lichtkräfte einer optischen Einstrahl-Falle im Lichtmikroskop,” M.S. thesis (Technische Universität München, Garching, Germany, 1993).
  14. C. W. Oseen, Neuere Methoden und Ergebnisse in der Hydrodynamik (Akademische Verlagsgesellschaft, Leipzig, 1927).
  15. J. Happel, H. Brenner, Low Reynolds Number Hydrodynamics, 2nd ed. (Nordhoff, Groningen, 1973).
  16. K. Svoboda, S. M. Block, “Biological applications of optical forces,” Ann. Rev. Biophys. Biomol. Struct. 23, 247–285 (1994). [CrossRef]
  17. M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, New York, 1980).
  18. H. E. Keller, “Objective lenses for confocal microscopy,” in Handbook of Biological Confocal Microscopy, J. B. Pawley, ed. (Plenum, New York, 1990), pp. 77–86. [CrossRef]
  19. C. J. R. Sheppard, M. Gu, K. Brain, H. Zhou, “Influence of spherical aberration on axial imaging of confocal reflection microscopy,” Appl. Opt. 33, 616–624 (1994). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited