OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 34, Iss. 8 — Mar. 10, 1995
  • pp: 1303–1309

Angle-dependent diffraction efficiency in a thick photorefractive hologram

Hanying Zhou, Feng Zhao, and Francis T. S. Yu  »View Author Affiliations


Applied Optics, Vol. 34, Issue 8, pp. 1303-1309 (1995)
http://dx.doi.org/10.1364/AO.34.001303


View Full Text Article

Enhanced HTML    Acrobat PDF (332 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The diffraction from a thick photorefractive hologram is shown to be angular dependent, which originates mainly from the angle-dependent effective electro-optic coefficient of a photorefractive crystal. The angle dependency of the diffraction causes a nonuniform diffraction over the pixel positions or the spatial frequency contents of a hologram image in a page-oriented holographic system, resulting in a deteriorated reconstructed image. In addition, owing to the angular variations in diffraction, the wavelength-multiplexing scheme should be a better choice than angular one.

© 1995 Optical Society of America

History
Original Manuscript: May 16, 1994
Revised Manuscript: October 5, 1994
Published: March 10, 1995

Citation
Hanying Zhou, Feng Zhao, and Francis T. S. Yu, "Angle-dependent diffraction efficiency in a thick photorefractive hologram," Appl. Opt. 34, 1303-1309 (1995)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-34-8-1303


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. J. Amodei, D. L. Staebler, W. Stephens, “Holographic storage in doped barium sodium niobate (Ba2NaNb5O15),” Appl. Phys. Lett. 18, 507–509 (1971). [CrossRef]
  2. D. Psaltis, F. Mok, H. S. Li, “Nonvolatile storage in photorefractive crystals,” Opt. Lett. 19, 210–213 (1994). [CrossRef] [PubMed]
  3. F. H. Mok, M. C. Tackitt, H. M. Stoll, “Storage of 500 high-resolution holograms in a LiNbO3 crystal,” Opt. Lett. 16, 605–607 (1991). [CrossRef] [PubMed]
  4. S. Yin, H. Zhou, F. Zhao, M. Wen, Z. Yang, J. Zhang, F. T. S. Yu, “Wavelength-multiplexed holographic storage in a sensitive photorefractive crystal using a visible-light tunable diode laser,” Opt. Commun. 101, 317–321 (1993). [CrossRef]
  5. F. T. S. Yu, S. Jutamulia, in Optical Signal Processing, Computing, and Neural Networks (Wiley, New York, 1992), Chap. 7, pp. 249–286.
  6. P. Gunter, J. P. Huignard, eds. Photorefractive Materials and Their Applications. I. (Springer-Verlag, New York, 1988), Chap. 2, p. 60.
  7. C. Gu, P. Yeh, “Scattering due to randomly distributed charge particles in photorefractive crystals,” Opt. Lett. 16, 1572–1574 (1991). [CrossRef] [PubMed]
  8. M. C. Bashaw, A. Aharoni, L. Hesselink, “Alleviation of image distortion due to striations in a photorefractive medium by using a phase-conjugated reference wave,” Opt. Lett.1149–1151 (1992). [CrossRef] [PubMed]
  9. A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. C. Smith, A. A. Ballman, J. J. Levinstein, K. Nassau, “Optically induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 71–74 (1966). [CrossRef]
  10. F. Zhao, H. Zhou, Z. Wu, F. T. S. Yu, D. K. McMillen, “Temperature dependence of light-induced scattering and noise suppression in Ce:Fe:LiNbO3,” submitted to Applied Optics.
  11. J. Ma, L. Liu, S. Wu, Z. Wang, L. Xu, B. Shu, “Multibeam coupling in photorefractive SBN:Ce,” Opt. Lett. 13, 1020–1022 (1988). [CrossRef] [PubMed]
  12. D. Zhao, H. Zhou, F. Zhao, F. T. S. Yu, “Anisotropic intrasignal coupling in photorefractive LiNbO3,” Microwave Opt. Tech. Lett. 7, 483–486 (1994). [CrossRef]
  13. F. Vachss, L. Hesselink, “Nonlinear photorefractive response at high modulation depths,” J. Opt. Soc. Am. A 5, 690–701 (1988). [CrossRef]
  14. B. Fischer, M. Segev, “Photorefractive waveguide and nonlinear mode coupling effects,” Appl. Phys. Lett. 54, 684–686 (1989). [CrossRef]
  15. Y. Fainman, E. Klancnik, S. H. Lee, “Optimal coherent image amplification by two-wave coupling in photorefractive BaTiO3,” Opt. Eng. 25, 228–234 (1986).
  16. H. Kogelnik, “Coupled wave theory for thick holograms,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
  17. C. Valley, M. B. Klein, “Optimal properties of photorefractive materials for optical data processing,” Opt. Eng. 22, 704–711 (1983).
  18. D. Psaltis, D. Brady, K. Wagner, “Adaptive optical networks using photorefractive crystal,” Appl. Opt. 27, 1752–1759 (1988). [CrossRef]
  19. A. Yariv, P. Yeh, Optical Waves in Crystal (Wiley, New York1984), Chap. 7, pp. 232–233.
  20. A. M. Glass, D. Von der Linde, T. J. Negran, “High-voltage bulk photovoltaic effect and the photorefractive process in LiNbO3,” Appl. Phys. Lett. 25, 233–235 (1974). [CrossRef]
  21. G. A. Rakujilc, V. Leyva, A. Yariv, “Optical data storage by using orthogonal wavelength-multiplexed volume holograms,” Opt. Lett. 17, 1471–1473 (1992). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited