OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 34, Iss. 9 — Mar. 20, 1995
  • pp: 1554–1561

Experimental studies of electro-optic polymer modulators and waveguides

Eric R. Hedin and Frederick J. Goetz  »View Author Affiliations


Applied Optics, Vol. 34, Issue 9, pp. 1554-1561 (1995)
http://dx.doi.org/10.1364/AO.34.001554


View Full Text Article

Enhanced HTML    Acrobat PDF (1037 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The results of an experimental study of electro-optic modulators and waveguides based on polymeric materials are presented. Included are the design, fabrication, and testing of integrated Mach–Zehnder modulators, which are based on polymer films that contain a novel, nonlinear electro-optic chromophore. Studies also show the efficacy of photolithography or photobleaching by the use of this chromophore to form passive, branching waveguides, which are operated at the 1300-nm wavelength.

© 1995 Optical Society of America

History
Original Manuscript: May 16, 1994
Revised Manuscript: September 15, 1994
Published: March 20, 1995

Citation
Eric R. Hedin and Frederick J. Goetz, "Experimental studies of electro-optic polymer modulators and waveguides," Appl. Opt. 34, 1554-1561 (1995)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-34-9-1554


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. F. Lipscomb, R. S. Lytel, A. J. Ticknor, R. E. Van Eck, S. L. Kwiatkowski, D. G. Girton, “Developments in organic electro-optic devices at Lockheed,” in Nonlinear Optical Properties of Organic Materials III, G. Khanarian, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1337, 23–34 (1990).
  2. G. R. Mohlmann, W. H. G. Horsthuis, A. McDonach, M. J. Copeland, C. Duchet, P. Fabre, M. B. J. Diemeer, E. S. Trommel, F. M. M. Suyten, E. Van Tomme, P. Baquero, P. Van Daele, “Optically nonlinear polymeric switches and modulators,” in Nonlinear Optical Properties of Organic Materials III, G. Khanarian, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1337, 215–225 (1990).
  3. K. D. Singer, W. R. Holland, M. G. Kuzyk, G. L. Wolk, H. E. Katz, M. L. Schilling, “Second-order nonlinear optical devices in poled polymers,” in Nonlinear Optical Properties of Organic Materials II, G. Khanarian, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1147, 233–244 (1989).
  4. G. H. Cross, A. Donaldson, R. W. Gymer, S. Mann, N. J. Parsons, “Polymeric integrated electro-optic modulators,” in Integrated Optics and Optoelectronics, L. McCaughan, M. A. Mentzer, S. Peng, H. J. Wojtunik, K. Wong, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1177, 79–91 (1989).
  5. C. C. Teng, “Traveling-wave polymeric optical intensity modulator with more than 40 GHz of 3-dB electrical bandwidth,” Appl. Phys. Lett. 60, 1538–1540 (1992). [CrossRef]
  6. M. Izutsu, Y. Nakai, T. Sueta, “Operation mechanism of the single-mode optical-waveguide Y junction,” Opt. Lett. 7, 136–138 (1982). [CrossRef] [PubMed]
  7. J. I. Thackara, G. F. Lipscomb, M. A. Stiller, A. J. Ticknor, R. Lytel, “Poled electro-optic waveguide formation in thin-film organic media,” Appl. Phys. Lett. 52, 1031–1033 (1988). [CrossRef]
  8. E. A. J. Marcatili, “Dielectric rectangular waveguide and directional coupler for integrated optics,” Bell Syst. Technol. J. 48, 2071–2102 (1969).
  9. T. Kurokawa, N. Takato, Y. Katayama, “Polymer optical circuits for multimode optical fiber systems,” Appl. Opt. 19, 3124–3129 (1980). [CrossRef] [PubMed]
  10. E. A. J. Marcatili, “Bends in optical dielectric guides,” Bell Syst. Technol. J. 48, 2103–2132 (1969).
  11. K. T. Koai, P.-L. Liu, “Modeling of Ti:LiNbO3 waveguide devices: part II–S-shaped channel waveguide bends,” J. Lightwave Technol. 7, 1016–1021 (1989). [CrossRef]
  12. C. Y. Wang, Y. K. Tu, “Waveguide bending loss analysis using beam propagation method,” in Optoelectronic Materials, Devices, Packaging and Interconnects II, G. M. McWright, H. J. Wojtunik, eds., Proc. Soc. Photo-Opt. Instrum. Eng.994, 217–223 (1988).
  13. K. B. Rochford, R. Zanoni, Q. Gong, G. I. Stegeman, “Fabrication of integrated optical structures in polydiacetylene films by irreversible photoinduced bleaching,” Appl. Phys. Lett. 55, 1161–1163 (1989). [CrossRef]
  14. K. W. Beeson, K. A. Horn, M. McFarland, A. Nahata, C. Wu, J. T. Yardley, “Polymeric materials for guided-wave devices,” in Nonlinear Optical Properties of Organic Materials III, G. Khanarian, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1337, 195–202 (1990).
  15. P. R. Ashley, T. A. Tumolillo, “New poling technique for electro-optic polymer devices,” in Integrated Photonics Research, Vol. 8 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1991), pp. 9–11.
  16. C. P. J. M. Van der Vorst, R. A. Huijts, “Measurements of electro-optic coefficients in a novel side-chain polymer,” in Electro-Optic and Magneto-Optic Materials and Applications, J. P. Castera, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1126, 6–11 (1989).
  17. A. Yariv, Optical Electronics, 3rd ed. (Holt, Rinehart & Winston, New York, 1985), Chap. 9.
  18. M. A. Hubbard, N. Minami, C. Ye, T. J. Marks, J. Yang, G. K. Wong, “Poled polymeric second harmonic generation materials: chemical manipulation of the temporal characteristics of electric field-induced noncentrosymmetry,” in Nonlinear Optical Properties of Organic Materials, G. Khanurian, ed., Proc. Soc. Photo-Opt. Instrum. Eng.971, 136–143 (1988).
  19. D. R. Dai, T. J. Marks, J. Yang, P. M. Lundquist, G. K. Wong, “Polyphenylene ether based thin-film nonlinear optical materials having high chromophore densities and alignment stability,” Macromolecules 23, 1891–1894 (1990). [CrossRef]
  20. R. Baets, P. E. Lagasse, “Calculation of radiation loss in integrated-optic tapers and Y-junctions,” Appl. Opt. 21, 1972–1978 (1982). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited