OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 35, Iss. 1 — Jan. 1, 1996
  • pp: 15–23

Simple analytical model of bias dependence of the photocurrent of metal–semiconductor–metal photodetectors

Liann-Chern Liou and Bahram Nabet  »View Author Affiliations


Applied Optics, Vol. 35, Issue 1, pp. 15-23 (1996)
http://dx.doi.org/10.1364/AO.35.000015


View Full Text Article

Enhanced HTML    Acrobat PDF (254 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The current-voltage (I–V) characteristics of metal–semiconductor–metal (MSM) photodetectors under various light intensities are examined. The current shows an initial increase followed by saturation and a subsequent sharp increase as bias increases. We propose a theoretical model for bias dependence in all regions of operation except for breakdown, based on drift collection of carriers in the depleted regions under the contacts and diffusion and recombination in the undepleted region. This is based on the solution of the diffusion equation in the undepleted area between the two contacts of the MSM structure. The solution is subject to boundary conditions on excess minority carriers at the cathode end and continuity of current at the anode end. The latter is written in terms of a parameter, denoted as effective diffusion length, which describes the collection efficiency of carriers at the anode. The closed-form solution thus derived corroborates with physical expectations in several limiting cases. To compare theory with experiment, we propose methods to extract parameters that are used to normalize the I–V curves and calculate depletion widths under different light intensities, from current- and capacitance-voltage measurements. A close match between experimental and theoretical results is observed, and possible breakdown mechanisms are discussed.

© 1996 Optical Society of America

History
Original Manuscript: January 3, 1995
Revised Manuscript: August 22, 1995
Published: January 1, 1996

Citation
Liann-Chern Liou and Bahram Nabet, "Simple analytical model of bias dependence of the photocurrent of metal–semiconductor–metal photodetectors," Appl. Opt. 35, 15-23 (1996)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-35-1-15


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Ito, O. Wada, “Low dark current GaAs metal– semiconductor–metal (MSM) photodiodes using WSix contacts,” IEEE J. Quantum Electron. QE-22, 1073–1077 (1986). [CrossRef]
  2. C. W. Slayman, L. Figueroa, “Frequency and pulse response of a novel high speed interdigital surface photocon-ductor (IDPC),” IEEE Trans. Electron Devices Lett. EDL-2, 112–114 (1981). [CrossRef]
  3. B. J. Van Zeghbroeck, W. Patrick, J. Halbout, P. Vettiger, “105 GHz bandwidth metal–semiconductor–metal photodiode,” IEEE Trans. Electron Devices Lett. 9, 527–529 (1988). [CrossRef]
  4. W. Roth, H. Schumacher, J. Kluge, H. J. Geelen, H. Beneking, “The DSI diode: a fast larger-area optoelectronic detector,” IEEE Trans. Electron Devices ED-32, 1034–1036 (1985). [CrossRef]
  5. C. J. Wei, H.-J. Klein, H. Beneking, “Symmetrical Mott barrier as a fast photodetector,” Electron. Lett. 17, 688–689 (1981). [CrossRef]
  6. O. Wada, H. Hamaguchi, M. Makiuchi, T. Kumai, M. Ito, K. Nakai, T. Horimatsu, T. Sakurai, “Monolithic four-channel photodiode/amplifier receiver array integrated on a GaAs substrate,” J. Lightwave Technol. LT-4, 1694–1703 (1986). [CrossRef]
  7. J. B. D. Soole, H. Schumacher, “GaAs metal–semiconductor–metal photodetectors for long wavelength optical communications,” IEEE J. Quantum Electron. 27, 737–752 (1991). [CrossRef]
  8. J. Lu, R. Surridge, G. Pakulski, H. van Driel, J. M. Xu, “Studies of high speed metal–semiconductor–metal photodetector with a GaAs/AlGaAs/GaAs heterostructure,” IEEE Trans. Electron Devices 40, 1087–1092 (1993). [CrossRef]
  9. K. Litvin, J. Burm, D. Woodard, W. Schaff, L. F. Eastman, “High speed optical detector for monolithic millimeter wave integrated circuits,” in IEEE MTT-S International Microwave Symposium Digest (Institute of Electrical and Electronics Engineers, New York, 1993), Vol. 2, pp. 1063–1066. [CrossRef]
  10. S. Y. Chou, Y. Liu, “Nanoscale terahertz metal–semiconductor–metal photodetectors,” IEEE J. Quantum Electron. 28, 2358–2368 (1992). [CrossRef]
  11. T. Sugeta, T. Urisu, S. Sakata, Y. Mizushima, “Metal– semiconductor–metal photodetector for high speed optoelectronic circuits,” Jpn. J. Appl. Phys., Suppl. 19-1, 19, 459–464 (1980).
  12. S. Kawanishi, Y. Yamabayashi, T. Takada, H. Takada, M. Saruwatwri, K. Nakagawa, “2Gb/s operation of an optical-clock-driven monolithically integrated GaAs D-flip-flip with metal-semiconductor-metal photodetectors for high-speed synchronous circuits,” IEEE Photon. Technol. Lett. 4, 160–163 (1992). [CrossRef]
  13. Y. Nitta, J. Ohta, M. Takahashi, S. Tai, K. Kyuma, “Optical neurochip with learning capability,” IEEE Photon. Technol. Lett. 4, 247–250 (1992). [CrossRef]
  14. E. Sano, “A device model for metal–semiconductor–metal photodetectors and its applications to optoelectronic integrated circuit simulation,” IEEE Trans. Electron Devices, 37, 1964–1968 (1990). [CrossRef]
  15. E. Sano, “Two dimensional ensemble Monte Carlo calculation of pulse responses of submicrometer GaAs metal–semiconductor–metal photodetectors,” IEEE Trans. Electron Devices 38, 2075–2081 (1991). [CrossRef]
  16. S. M. Sze, D. J. Coleman, A. Loya, “Current transport in metal–semiconductor–metal (MSM) structures,” Solid-State Electron. 14, 1209–1218 (1971). [CrossRef]
  17. H. K. Henisch, Semiconductor Contacts (Oxford U. Press, London, 1988).
  18. S. M. Sze, G. Gibbons, “Avalanche breakdown of abrupt and linearly graded p-n junctions in Ge, Si, GaAs, and GaP,” Appl. Phys. Lett. 8, 111–113 (1966). [CrossRef]
  19. S. Wang, Fundamentals of Semiconductor Theory and Device Physics (Prentice-Hall, Englewood Cliffs, N.J., 1989), Chap. 10.6.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited