OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 35, Iss. 1 — Jan. 1, 1996
  • pp: 161–168

Wigner distribution function applied to third-order aberrations

D. Dragoman  »View Author Affiliations


Applied Optics, Vol. 35, Issue 1, pp. 161-168 (1996)
http://dx.doi.org/10.1364/AO.35.000161


View Full Text Article

Enhanced HTML    Acrobat PDF (372 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The Wigner-distribution-function description of light beams is extended to aberrated optical systems. The simulations performed show that the different types of aberrations can be identified separately by the use of experimental devices that display projections of the Wigner distribution function of a two-dimensional beam.

© 1996 Optical Society of America

History
Original Manuscript: March 15, 1995
Revised Manuscript: August 28, 1995
Published: January 1, 1996

Citation
D. Dragoman, "Wigner distribution function applied to third-order aberrations," Appl. Opt. 35, 161-168 (1996)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-35-1-161


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Born, E. Wolf, Principles of Optics, 4th ed. (Pergamon, Oxford, 1970), Chap. 5.
  2. H. A. Buchdahl, Optical Aberration Coefficients (Dover, New York, 1968).
  3. H. A. Buchdahl, An Introduction to Hamiltonian Optics (Cambridge U. Press, Cambridge, U.K.1970).
  4. C. H. F. Velzel, J. L. F. de Meijere, “Characteristic functions and the aberrations of symmetric optical systems. I. Transverse aberrations when the eikonal is given,” J. Opt. Soc. Am. A 5, 246–250 (1988);“Characteristic functions and the aberrations of symmetrical optical systems. II. Addition of aberrations,” J. Opt. Soc. Am. A 5, 251–256 (1988);“Characteristic functions and the aberrations of symmetrical optical systems. III. Calculation of eikonal coefficients,” J. Opt. Soc. Am. A 5, 1237–1243 (1988). [CrossRef]
  5. A. J. Dragt, E. Forest, K. B. Wolf, “Foundations of a Lie algebraic theory of geometrical optics,” in Lie Methods in Optics, J. Sanchez-Mondragon, K. B. Wolf, eds. (Springer-Verlag, Berlin, 1986), pp. 105–158. [CrossRef]
  6. V. I. Mańko, K. B. Wolf, “The influence of spherical aberration on Gaussian beam propagation,” in Lie Methods in Optics, J. Sanchez-Mondragon, K. B. Wolf, eds. (Springer-Verlag, Berlin, 1986), pp. 207–226. [CrossRef]
  7. J. Ojeda-Castaneda, “Focus-error operator and related special functions,” J. Opt. Soc. Am. 73, 1042–1047 (1983). [CrossRef]
  8. E. Wigner, “On the quantum correction for thermodynamic equilibrium,” Phys. Rev. 40, 749–759 (1932). [CrossRef]
  9. M. J. Bastiaans, “Wigner distribution function and its application to first-order optics,” J. Opt. Soc. Am. 69, 1710–1716 (1979). [CrossRef]
  10. M. J. Bastiaans, “Application of the Wigner distribution function to partially coherent light,” J. Opt. Soc. Am. A 3, 1227–1238 (1986). [CrossRef]
  11. D. Onciul, “Invariant properties of general astigmatic beams through first-order optical systems,” J. Opt. Soc. Am. A 10, 295–298 (1993). [CrossRef]
  12. D. Dragoman, “Higher-order moments of the Wigner distribution function in first-order optical systems,” J. Opt. Soc. Am. A 11, 2643–2646 (1994). [CrossRef]
  13. A. W. Lohmann, J. Ojeda-Castaneda, N. Streibl, “The influence of wave aberrations on the Wigner distribution,” Opt. Appl. 13, 465–471 (1983).
  14. M. J. Bastiaans, “The Wigner distribution function and Hamilton's characteristics of a geometric-optical system,” Opt. Commun. 30, 321–326 (1979). [CrossRef]
  15. J. L. Synge, Geometrical Optics: An Introduction to Hamilton's Method (Cambridge U. Press, Cambridge, U.K.1962).
  16. A. Papoulis, Systems and Transforms with Applications in Optics (McGraw-Hill, New York, 1968).
  17. R. K. Luneburg, Mathematical Theory of Optics (University of California, Berkeley, 1966).
  18. E. C. G. Sudarshan, N. Mukunda, R. Simon, “Realization of first-order optical systems using thin lenses,” Opt. Acta 32, 855–872 (1985). [CrossRef]
  19. H. O. Bartelt, K. H. Brenner, A. W. Lohmann, “The Wigner distribution function and its optical production,” Opt. Commun. 3232–38 (1980). [CrossRef]
  20. R. Bamler, H. Glunder, “The Wigner distribution function of two-dimensional signals: coherent-optical generation and display,” Opt. Acta 30, 1789–1803 (1983). [CrossRef]
  21. H. Weber, “Wave optical analysis of the phase space analyser,” J. Mod. Opt. 39, 543–559 (1992). [CrossRef]
  22. N. Hodgson, T. Haase, R. Kostka, H. Weber, “Determination of laser beam parameters with the phase space beam analyser,” Opt. Quantum Electron. 24927–949 (1992). [CrossRef]
  23. J. A. Arnaud, Beam and Fiber Optics (Academic, New York, 1976), Chap. 4, p. 236.
  24. J. D. Lawson, The Physics of Charged-Particle Beams (Clarendon, Oxford, 1988), Chap. 4.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited