OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 35, Iss. 1 — Jan. 1, 1996
  • pp: 38–50

Experimental study of the effect of surface defects on the finesse and contrast of a Fabry–Perot interferometer

E. D. Palik, Hacène Boukari, and Robert W. Gammon  »View Author Affiliations


Applied Optics, Vol. 35, Issue 1, pp. 38-50 (1996)
http://dx.doi.org/10.1364/AO.35.000038


View Full Text Article

Enhanced HTML    Acrobat PDF (322 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

While investigating the instrumental function of a Fabry–Perot interferometer [Appl. Opt. 34, 58 (1995)], we noticed some variation in finesse and contrast in the measured spectra when a 1.5-mm-diameter aperture was used at various spots within the standard 8-mm aperture. By comparing experimentally determined finesse versus contrast plots for many such spectra with calculated plots, we found spots on the plates that gave non-Airy-function line shapes over the entire order of interference, unlike the Airy line shape we determined previously by using the entire 8-mm aperture. We have reviewed several models that describe the effects of various types of surface defects, such as Gaussian-height distribution of roughness, curvature and tilt of plates, sinusoidal roughness, and asymmetrical roughness on the finesse and contrast. Our experimental results can be accounted for if we assume that the reflectivity is nonuniform over the Fabry–Perot plates and that there is some reasonable contribution that is due to Gaussian roughness, curvature, or tilt.

© 1996 Optical Society of America

History
Original Manuscript: March 9, 1995
Revised Manuscript: August 22, 1995
Published: January 1, 1996

Citation
E. D. Palik, Hacène Boukari, and Robert W. Gammon, "Experimental study of the effect of surface defects on the finesse and contrast of a Fabry–Perot interferometer," Appl. Opt. 35, 38-50 (1996)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-35-1-38


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. W. Ditchburn, Light (Interscience, New York, 1964), Chap. 5.
  2. M. V. Klein, Optics (Wiley, New York, 1970), Chap. 5.
  3. M. Born, E. Wolf, Principles of Optics (Pergamon, London, 1959), Chap. 7, p. 328.
  4. E. D. Palik, H. Boukari, R. W. Gammon, “Line-shape studies for single- and triple-pass Fabry–Perot interferometer systems,” Appl. Opt. 34, 58–68 (1995). [CrossRef] [PubMed]
  5. H. Boukari, E. D. Palik, R. W. Gammon, “Closed-form expressions to fit data obtained with a multipass Fabry–Perot interferometer,” Appl. Opt. 34, 69–86 (1995). [CrossRef] [PubMed]
  6. E. A. Ballik, “The response of scanning Pabry–Perot interferometers to atomic transition profiles,” Appl. Opt. 5, 170–172 (1966). [CrossRef] [PubMed]
  7. H. W. Leidecker, J. T. LaMacchia, “Instrumental effects on Brillouin line shapes,” J. Acoust. Soc. Am. 43, 143–151 (1968). [CrossRef]
  8. S. M. Lindsay, S. Burgess, I. W. Shepherd, “Correction of Brillouin linewidths measured by multipass Pabry–Perot spectroscopy,” Appl. Opt. 16, 1404–1407 (1977). [CrossRef] [PubMed]
  9. J. M. Alvarez, J. A. Valles, “Determination of a Fabry– Perot multipass interferometer instrumental function,” Appl. Opt. 28, 2191–2193 (1989). [CrossRef] [PubMed]
  10. D. Zhechev, R. Zaprianova, I. Koleva, “On the Voigt analysis of interferograms by using Ballik's method,” Spectrosc. Lett. 14, 809–817 (1981). [CrossRef]
  11. G. Hernandez, “Analytical description of a Fabry–Perot photoelectric spectrometer,” Appl. Opt. 5, 1745–1748 (1966) and references therein. [CrossRef] [PubMed]
  12. P. K. Katti, K. Singh, “Fringe irradiance distribution in Fabry–Perot interferometer with a tilted mirror,” Optik 24, 347–354 (1967).
  13. J. G. Dil, N. C. J. A. van Hijningen, F. van Dorst, R. M. Aarts, “Tandem multipass Fabry–Perot interferometer for Brillouin scattering,” Appl. Opt. 20, 1374–1381 (1981). [CrossRef] [PubMed]
  14. D. Malacara, Optical Shop Testing (Wiley, New York, 1978), Chaps. 1 and 2.
  15. C. Roychoudhuri, “Multiple-beam interferometers,” in Optical Shop Testing, D. Malacara, ed. (Wiley, New York, 1978), Chap. 6.
  16. G. Koppelmann, K. Krebs, “Eine Registriermethode zur Vermessung des Reliefs höchstebener Oberflächen,” Optik 18, 349–357 (1961);“Zur Technologie des Pérot–Fabry Interferometers,” Optik 18, 358–373 (1961).
  17. I.J. Hodgkinson, “A method for mapping and determining the surface defects function of pairs of coated optical flats,” Appl. Opt. 8, 1373–1378 (1969). [CrossRef] [PubMed]
  18. T. L. Killeen, P. B. Hays, J. DeVos, “Parallelism maps for optically contacted etalons,” Appl. Opt. 20, 2616–2619 (1981). [CrossRef] [PubMed]
  19. G. J. Sloggett, “Fringe broadening in Fabry–Perot interferometers,” Appl. Opt. 23, 2427–2432 (1984). [CrossRef] [PubMed]
  20. V. N. Del Piano, A. F. Quesada, “Transmission characteristics of Pabry–Perot interferometers and a related electrooptic modulator,” Appl. Opt. 4, 1386–1390 (1965). [CrossRef]
  21. M.A. Khashan, “Analytical determination of linewidths using the Pabry–Perot spectrometer,” Physica 98C, 93–99 (1979).
  22. J. V. Ramsay, “Aberrations of Fabry–Perot interferometers when used as filters,” Appl. Opt. 8, 569–574 (1969). [CrossRef] [PubMed]
  23. V. V. Dunaev, A. G. Zhiglinskii, V. V. Kuchinskii, “Instrument contour of a nonideal Fabry–Perot interferometer: Part 2,” Opt. Spectrosc. 43, 460–462 (1977);Opt. Spektrosk. 43, 780–784 (1977).
  24. K. Krebs, A. Sauer, “Über die Intensittäsverteilung von Spektrallinien im Pérot–Fabry Interferometer,” Ann. Phys. 6, 359–368 (1953). [CrossRef]
  25. R. M. Hill, “Some fringe-broadening defects in a Fabry–Perot éalon,” Opt. Acta 10, 141–152 (1963). [CrossRef]
  26. T. N. Siraya, A. L. Etsina, I. S. Etsin, “Random defects in the medium and the mirrors in a Fabry–Perot interferometer,” Opt. Spectrosc. 45, 105–106 (1978)[Opt. Spektrosk. 45, 193–194 (1978).]
  27. P. A. Wilksch, “Instrument function of the Fabry–Perot spectrometer,” Appl. Opt. 24, 1502–1511 (1985). [CrossRef] [PubMed]
  28. G. S. Bhatnagar, K. Singh, B. N. Gupta, “Transmission profile of a Fabry–Perot interferometer suffering from asymmetric surface defects,” Nouv. Rev. Opt. 5, 237–240 (1974). [CrossRef]
  29. V. V. Dunaev, A. G. Zhiglinskii, V. V. Kuchinskii, “Instrumental profile of an ideal Fabry–Perot interferometer,” Opt. Spectrosc. 45, 87–89 (1978)[Opt. Spektrosk.45, 159–164 (1978).]
  30. J. M. Bennett, L. Mattsson, Introduction to Surface Roughness and Scattering (Optical Society of America, Washington, D.C., 1989), Chap. 4, p. 38.
  31. J. M. Bennett, Surface Finish and Its Measurement: Part A (Optical Society of America, Washington, D.C., 1992), Chap. IV.5, p. 376.
  32. G. Rasigni, F. Varnier, M. Rasigni, J. P. Palmari, A. Llebaria, “Autocovariance functions for polished optical surfaces,” J. Opt. Soc. Am. 73, 222–233 (1983). [CrossRef]
  33. C. Roychoudhuri, M. Hercher, “Stable multipass Fabry– Perot interferometer: design and analysis,” Appl. Opt. 16, 2514–2520 (1977). [CrossRef] [PubMed]
  34. C. Dufour, R. Picca, “Sur l'intérferomètre Fabry–Perot: importance des imperfections des surfaces,” Rev. Opt. 24, 19–34 (1945).
  35. J. M. Vaughan, The Fabry–Perot Interferometer, History, Theory, Practice, and Applications (Hilger, Bristol, 1989), Chap. 3, p. 124, Chap. 6, p. 239.
  36. G. Hernandez, Fabry–Perot Interferometers (Cambridge U. Press, Cambridge, U.K.1986), Chap. 2, p. 25.
  37. R. Gupta, C. D. Prasad, “Instrumental broadening caused by the misalignment function in a Fabry–Perot étalon assembly,” Appl. Opt. 30, 373–375 (1991). [CrossRef] [PubMed]
  38. R. Chabbal, “Recherche des meilleures conditions d'utilisation d'un spectromètre photoélectrique Fabry–Perot,” J. Rech. CNRS 24, 138–186 (1953);“Finesse limite d'un Fabry–Perot interferometre formé de lames imparfaites,” J. Phys. Rad. 19, 295–300 (1958).
  39. J. M. Bennett, “Measurement of the rms roughness, autocovariance and other statistical properties of optical surfaces using a FECO scanning interferometer,” Appl. Opt. 15, 2705–2721 (1976). [CrossRef] [PubMed]
  40. L. N. Durvasula, R. W. Gammon, “Pressure-scanned three-pass Fabry–Perot interferometer,” Appl. Opt. 17, 3298–3303 (1978). [CrossRef] [PubMed]
  41. J. M. Vaughan, “Brillouin scattering in the nematic and isotropic phases of a liquid crystal,” Phys. Lett. A 58, 325–328 (1976). [CrossRef]
  42. S. M. Lindsay, I. W. Shepherd, “A high-contrast Fabry– Perot spectrometer,” J. Phys. E 10, 150–154 (1977). [CrossRef] [PubMed]
  43. J. R. Sandercock, “The design and use of a stabilized multipassed interferometer of high contrast ratio,” in Proceedings of the Second International Conference on Light Scattering in Solids, M. Balkanski, ed. (Flammarion, Paris, 1971), p. 9.
  44. J. G. Dil, E. M. Brody, “Brillouin scattering from isotropic metals,” Phys. Rev. B 14, 5218–5227 (1976). [CrossRef]
  45. T. L. Killeen, P. B. Hays, B. C. Kennedy, D. Rees, “Stable and rugged etalon for the Dynamics Explorer Fabry–Perot interferometer. 2: Performance,” Appl. Opt. 21, 3903–3912 (1982). [CrossRef] [PubMed]
  46. M. Čopič, M. Zgonik, “On multipass Fabry–Perot interferometer,” Opt. Commun. 41, 310–314 (1982). [CrossRef]
  47. J. T. Trauger, “Broadband dielectric mirror coatings for Fabry–Perot spectroscopy,” Appl. Opt. 15, 2998–3005 (1976). [CrossRef] [PubMed]
  48. R. P. Netterfield, R. C. Schaeffer, W. G. Sainty, “Coating Fabry–Perot interferometer plates with broadband multilayer dielectric mirrors,” Appl. Opt. 19, 3010–3017 (1980). [CrossRef] [PubMed]
  49. C. K. Carniglia, “Scalar scattering theory for multilayer optical coatings,” Opt. Eng. 18, 104–115 (1979).
  50. A. E. Ennos, “Stresses developed in optical film coatings,” Appl. Opt. 5, 51–61 (1966). [CrossRef] [PubMed]
  51. P. A. Greet, “Coating stress in Fabry–Perot étalons,” Appl. Opt. 25, 3328–3330 (1986). [CrossRef] [PubMed]
  52. E. D. Palik, J. W. Gibson, R. T. Holm, M. Hass, M. Braunstein, B. Garcia, “Infrared characterization of surfaces and coatings by internal-reflection spectroscopy,” Appl. Opt. 17, 1776–1785 (1978). [CrossRef] [PubMed]
  53. H. A. Macleod, “Structure-related optical properties of thin films,” J. Vac. Sci. Technol. A 4, 418–422 (1986). [CrossRef]
  54. I. J. Hodgkinson, M. R. Jacobson, H. A. Macleod, R. H. Potoff, M. Sikkens, R. Sprague, C. C. Lee, “Water penetration fronts in thin films deposited at oblique incidence,” Thin Solid Films 138, 289–296 (1986). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited