OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 35, Iss. 10 — Apr. 1, 1996
  • pp: 1780–1792

Fluorescence spectroscopy of tissue: recovery of intrinsic fluorescence from measured fluorescence

Craig M. Gardner, Steven L. Jacques, and Ashley J. Welch  »View Author Affiliations


Applied Optics, Vol. 35, Issue 10, pp. 1780-1792 (1996)
http://dx.doi.org/10.1364/AO.35.001780


View Full Text Article

Enhanced HTML    Acrobat PDF (383 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a method for recovering the intrinsic fluorescence coefficient, defined as the product of the fluorophore absorption coefficient and the fluorescence energy yield, of an optically thick, homogeneous, turbid medium from a surface measurement of fluorescence and from knowledge of medium optical properties. The measured fluorescence signal is related to the intrinsic fluorescence coefficient by an optical property dependent path-length factor. A simple expression was developed for the path-length factor, which characterizes the penetration of excitation light and the escape of fluorescence from the medium. Experiments with fluorescent tissue phantoms demonstrated that intrinsic fluorescence line shape could be recovered and that fluorophore concentration could be estimated within ±15%, over a wide range of optical properties.

© 1996 Optical Society of America

History
Original Manuscript: June 16, 1995
Revised Manuscript: October 16, 1995
Published: April 1, 1996

Citation
Craig M. Gardner, Steven L. Jacques, and Ashley J. Welch, "Fluorescence spectroscopy of tissue: recovery of intrinsic fluorescence from measured fluorescence," Appl. Opt. 35, 1780-1792 (1996)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-35-10-1780


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Richards-Kortum, A. Mehta, G. Hayes, R. Cothren, T. Kolubayev, C. Kittrell, N. B. Ratliff, J. R. Kramer, M. S. Feld, “Spectral diagnosis of atherosclerosis using an optical fiber laser catheter,” Am. Heart J. 118, 381–391 (1989). [CrossRef] [PubMed]
  2. K. T. Schomacker, J. K. Frisoli, C. C. Compton, T. J. Flotte, J. M. Richter, N. S. Nishioka, T. F. Deutsch, “Ultraviolet laser-induced fluorescence of colonic tissue: basic biology and diagnostic potential,” Lasers Surg. Med. 12, 63–78 (1992). [CrossRef] [PubMed]
  3. M. Keijzer, R. Richards-Kortum, S. Jacques, M. Feld, “Fluorescence spectroscopy of turbid media: autofluorescence of the human aorta,” Appl. Opt. 28, 4286–42921989. [CrossRef] [PubMed]
  4. S. R. Brown, D. I. Vernon, “The quantitative determination of porphyrins in tissues and body fluids: applications in studies of photodynamic therapy,” in Photodynamic Therapy of Neoplastic Disease, D. Kessel, ed. (CRC, Ann Arbor, Mich., 1990) Vol. 1, pp. 109–128.
  5. G. H. M. Gijsbers, D. Breederveld, M. J. C. van Gemert, T. A. Boon, J. Langelaar, R. P. H. Rettschnick, “In vivo fluorescence excitation and emission spectra of hematoporphyrin derivative,” Lasers Life Sci. 1, 29–48 (1986).
  6. A. J. Durkin, S. Jaikumar, N. Ramanujam, R. Richards-Kortum, “Relation between fluorescence spectra of dilute and turbid samples,” Appl. Opt. 33, 414–423 (1994). [CrossRef] [PubMed]
  7. R. Richards-Kortum, R. P. Rava, M. Fitzmaurice, L. L. Tong, N. B. Ratliff, J. R. Kramer, M. S. Feld, “A one-layer model of laser-induced fluorescence for diagnosis of disease in human tissue: applications to atherosclerosis,” IEEE Trans. Biomed. Eng. 36, 1222–1231 (1989). [CrossRef] [PubMed]
  8. W. R. Potter, T. S. Mang, “Photofrin II levels by in vivo fluorescence photometry,” in Porphyrin Localization and Treatment of Tumors, C. Gomer, D. Doiron, eds. (Liss, New York, 1984), pp. 177–186.
  9. A. E. Profio, S. Xie, K.-H. Shu, “Diagnosis of tumors by fluorescence: quantification of photosensitizer concentration,” in Photodynamic Therapy: Mechanisms II, T. J. Dougherty, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1203, 12–18 (1990).
  10. J. Wu, M. S. Feld, R. P. Rava, “Analytic model for extracting intrinsic fluorescence in turbid media,” Appl. Opt. 32, 3585–3595 (1993). [CrossRef] [PubMed]
  11. M. S. Patterson, B. W. Pogue, “Mathematical model for time-resolved and frequency-domain fluorescence spectroscopy in biological tissues,” Appl. Opt. 33, 1963–1974 (1994). [CrossRef] [PubMed]
  12. C. M. Gardner, S. L. Jacques, A. J. Welch, “Light transport in tissue: accurate expressions for one-dimensional fluence rate and escape function based upon Monte Carlo simulation,” Lasers Surg. Med. 18 (2), 129–138 (1996). [CrossRef] [PubMed]
  13. A. J. Durkin, S. Jaikumar, R. Richards-Kortum, “Optically dilute, absorbing, and turbid phantoms for fluorescence spectroscopy of homogeneous and inhomogeneous samples,” Appl. Spectrosc. 47, 2114–2121 (1993). [CrossRef]
  14. R. F. Kubin, A. N. Fletcher, “Fluorescence quantum yields of some rhodamine dyes,” J. Lumin. 27, 445–462 (1982). [CrossRef]
  15. B. C. Wilson, S. L. Jacques, “Optical reflectance and transmittance of tissues: principles and applications,” IEEE J. Quantum Electron. 26, 2186–2198 (1990). [CrossRef]
  16. S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, M. J. C. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med. 12, 510–519 (1992). [CrossRef] [PubMed]
  17. C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
  18. W.-F. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissue,” IEEE J. Quantum Electron. 26, 2166–2185 (1990). [CrossRef]
  19. S.A. Prahl, M. J. C. van Gemert, A. J. Welch, “Determining the optical properties of turbid media by using the adding–doubling method,” Appl. Opt. 32, 559–568 (1993). [CrossRef] [PubMed]
  20. J. Lakowicz, Principles of Fluorescence Spectroscopy (Plenum, New York, 1983). [CrossRef]
  21. N. Shaklai, J. Yguerabide, H. M. Ranney, “Interaction of hemoglobin with red blood cell membranes as shown by a fluorescent chromophore,” Biochemistry 16, 5585–5592 (1977). [CrossRef] [PubMed]
  22. T. J. Farrell, M. S. Patterson, B. C. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992). [CrossRef] [PubMed]
  23. C. M. Gardner, “Modeling fluorescence escape from tissue phantoms,” Ph.D. dissertation (University of Texas at Austin, Austin, Tex., 1995).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited