OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 35, Iss. 12 — Apr. 20, 1996
  • pp: 2069–2082

Low-power resonant laser ablation of copper

C. G. Gill, T. M. Allen, J. E. Anderson, T. N. Taylor, P. B. Kelly, and N. S. Nogar  »View Author Affiliations

Applied Optics, Vol. 35, Issue 12, pp. 2069-2082 (1996)

View Full Text Article

Enhanced HTML    Acrobat PDF (535 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We emphasize two points: (1) the properties and mechanisms of very low-fluence ablation of copper surfaces and (2) the sensitivity and selectivity of resonant laser ablation (RLA). We present results for ablation of bulk copper and copper thin films; spot-size effects; the effects of surface-sample preparation and beam polarization; and an accurate measurement of material removal rates, typically ≤10−3 Å at 35 mJ/cm2. Velocity distributions were Maxwellian, with peak velocities ≈1–2 × 105 cm/s. In addition, we discuss the production of diffractionlike surface features, and the probable participation of nonthermal desorption mechanisms. RLA is shown to be a sensitive and useful diagnostic for studies of low-fluence laser–material interactions.

© 1996 Optical Society of America

Original Manuscript: June 29, 1995
Revised Manuscript: December 7, 1995
Published: April 20, 1996

C. G. Gill, T. M. Allen, J. E. Anderson, T. N. Taylor, P. B. Kelly, and N. S. Nogar, "Low-power resonant laser ablation of copper," Appl. Opt. 35, 2069-2082 (1996)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. D. Kevan, “Electronic coherence length following pulsed-laser annealing of copper(001),” Phys. Rev. B 31, 3343–3347 (1985). [CrossRef]
  2. M. A. Shannon, A. A. Rostami, R. E. Russo, “Photothermal deflection measurements for monitoring heat transfer during modulated laser heating of solids,” J. Appl. Phys. 71, 53–63 (1992). [CrossRef]
  3. W. M. K. P. Wijekoon, M. Y. M. Lyktey, P. N. Prasad, J. F. Garvey, “The nature of copper in thin films of copper iodide grown by laser-assisted molecular beam deposition: comparative ESCA and EDXS studies,” J. Phys. D 27, 1548–1555 (1994). [CrossRef]
  4. P. R. Willmott, R. Timm, P. Felder, J. R. Huber, “Growth of CuO films by pulsed laser deposition in conjunction with a pulsed oxidation source,” J. Appl. Phys. 76, 2657–2661 (1994). [CrossRef]
  5. V. E. Fortov, V. V. Kostin, S. Eliezer, “Spallation of metals under laser irradiation,” J. Appl. Phys. 70, 4524–4531 (1991). [CrossRef]
  6. R. W. Kelly, R. W. Dreyfus, “On the effect of Knudsen-layer formation on studies of vaporization, sputtering and desorption,” Nucl. Instrum. Methods 32, 321–348 (1988).
  7. R. Kelly, “On the dual role of the Knudsen layer and unsteady, adiabatic expansion in pulse sputtering phenomena,” J. Chem. Phys. 92, 5047–5056 (1990). [CrossRef]
  8. J. C. S. Kools, T. S. Baller, S. T. De Zwart, J. Dieleman, “Gas flow dynamics in laser ablation deposition,” J. Appl. Phys. 71, 4547–4556 (1992). [CrossRef]
  9. H. M. Urbassek, D. Sibold, “Gas-phase segregation effects in pulsed laser deposition from binary targets,” Phys. Rev. Lett. 70, 1886–1889 (1993). [CrossRef] [PubMed]
  10. R. W. Dreyfus, “Cu°, Cu+ and Cu2 from excimer-ablated copper,” J. Appl. Phys. 69, 1721–1729 (1991). [CrossRef]
  11. R. Viswanathan, I. Hussia, “Ablation of metal surfaces by pulsed ultraviolet lasers under ultrahigh vacuum,” J. Opt. Soc. B 3, 796–800 (1986). [CrossRef]
  12. A. D. Sappey, T. K. Gamble, “Planar laser-induced fluorescence imaging of copper atom and dimers in a condensing laser-ablated copper plasma plume,” J. Appl. Phys. 72, 5095–5107 (1992). [CrossRef]
  13. J. C. S. Kools, S. H. Brongersma, E. Van de Riet, J. Dielemen, “Concentrations and velocity distributions of positive ions in laser ablation of copper,” Appl. Phys. B 53, 125–130 (1991). [CrossRef]
  14. K. L. Saenger, “Time-resolved optical emission during laser ablation of Cu, CuO, and high-Tc superconductors: Bi1.7Sr1.3Ca2Cu3 Ox and γBa1.7Cu2.7Oy,” J. Appl. Phys. 69, 4435–4440 (1989). [CrossRef]
  15. D. K. Zerkle, A. D. Sappey, “Limitations in the application of hook spectroscopy for density measurements in high-density-gradient media,” J. Appl. Phys. 75, 7576–7578 (1994). [CrossRef]
  16. T. L. Thiem, L. R. Watson, R. A. Dressler, R. H. Salter, E. Murad, “Fast metal-atom generation by laser vaporization of Cu, Zn, and Ni compounds,” J. Phys. Chem. 98, 11931–11941 (1994). [CrossRef]
  17. D. E. Pierce, R. P. Burns, K. A. Gabriel, “Thermal desorption spectroscopy of palladium and copper on silica,” Thin Solid Films 206, 340–344 (1991). [CrossRef]
  18. G. M. Holtmeier, D. R. Alexander, J. P. Barton, “High-intensity ultraviolet laser interaction with a metallic filament,” J. Appl. Phys. 71, 557–563 (1992). [CrossRef]
  19. K. W. D. Ledingham, J. S. Borthwick, R. P. Singhal, “The characteristics of resonant laser ablation for surface analysis,” Surf. Interface Anal. 18, 576–578 (1992). [CrossRef]
  20. C. J. McLean, J. H. Marsh, A. P. Land, A. Clark, R. Jennings, K. W. D. Ledingham, P. T. McCombes, A. Marshall, R. P. Singhal, M. Towrie, “Resonant laser ablation (RLA),” Int. J. Mass Spectrom. Ion Phys. 96, R1–R7 (1990). [CrossRef]
  21. L. Wang, I. S. Borthwick, R. Jennings, P. T. McCombes, K. W. D. Ledingham, R. P. Singhal, C. J. McLean, “Observations and analysis of resonant laser ablation of GaAs,” Appl. Phys. B 53, 34–38 (1991). [CrossRef]
  22. L. Wang, K. W. D. Ledingham, C. J. McLean, R. P. Singhal, “Laser-induced collisional processes in resonant laser ablation of GaAs,” Appl. Phys. B 54, 71–75 (1992). [CrossRef]
  23. G. C. Eiden, N. S. Nogar, “The two-photon spectrum of iron and silicon detected by resonant laser ablation,” Chem. Phys. Lett. 226, 509–516 (1994). [CrossRef]
  24. G. C. Eiden, J. E. Anderson, N. S. Nogar, “Resonant laser ablation: semiquantitative aspects and threshold effects,” Microchem. J. 50, 289–300 (1994). [CrossRef]
  25. T. M. Allen, P. B. Kelly, J. E. Anderson, N. S. Nogar, “Copper thin film analysis by resonant laser ablation,” Appl. Phys. A 61, 221–225 (1995). [CrossRef]
  26. H. M. Pang, E. S. Yeung, “Laser-enhanced ionization as a diagnostic tool in laser-generated plumes,” Anal. Chem. 61, 2546–2551 (1989). [CrossRef]
  27. F. R. Verdun, G. Krier, J. F. Muller, “Increased sensitivity in laser microprobe mass analysis by using resonant two-photon ionization processes,” Anal. Chem. 59, 1383–1387 (1987). [CrossRef]
  28. S. W. Downey, N. S. Nogar, C. M. Miller, “Resonance ionization mass spectrometry of technetium,” Int. J. Mass Spectrom. Ion Phys. 61, 337–345 (1984). [CrossRef]
  29. R. C. Estler, N. S. Nogar, “Ablation of high temperature superconductor studied by resonance ionization mass spectrometry (RIMS),” J. Appl. Phys. 69, 1654–1659 (1991). [CrossRef]
  30. W. W. Wiley, I. H. McLaren, “Time-of-flight mass spectrometer with improved resolution,” Rev. Sci. Instrum. 26, 1150–1155 (1955). [CrossRef]
  31. R. Stein, “Space and velocity focusing in time-of-flight mass spectrometers,” Int. J. Mass Spectrom. Ion Phys. 14, 205–218 (1974). [CrossRef]
  32. R. B. Opsal, K. G. Owens, J. P. Reilly, “Resolution in the linear time-of-flight mass spectrometer,” Anal. Chem. 57, 1884–1889 (1985). [CrossRef]
  33. E. C. Apel, J. E. Anderson, R. C. Estler, N. S. Nogar, C. M. Miller, “Use of two-photon excitation in resonance ionization mass spectrometry,” Appl. Opt. 26, 1045–1050 (1987). [CrossRef] [PubMed]
  34. C. M. Miller, N. S. Nogar, “Calculation of ion yields in atomic multiphoton ionization spectroscopy,” Anal. Chem. 55, 481–488 (1983). [CrossRef]
  35. R. J. Engleman, R. A. Keller, C. M. Miller, N. S. Nogar, J. A. Paisner, “Selective photoionization of copper-64 in the presence of copper-63 and copper-65,” Nucl. Instrum. Methods Phys. Res. Sect. B 26, 448–451 (1987). [CrossRef]
  36. B. L. Fearey, C. M. Miller, M. W. Rowe, J. E. Anderson, N. S. Nogar, “Pulsed laser resonance ionization mass spectrometry for elementally selective detection of lead and bismuth mixtures,” Anal. Chem. 60, 1786–1791 (1988). [CrossRef]
  37. G. S. Hurst, M. G. Payne, S. D. Kramer, J. P. Young, “Resonance ionization spectroscopy and one-atom detection,” Rev. Mod. Phys. 51, 767–819 (1979). [CrossRef]
  38. T. Gilbert, B. Dubreuil, M. F. Barthe, J. L. Debrun, “Investigation of laser sputtering of iron at low fluence using resonance ionization mass spectrometry,” J. Appl. Phys. 74, 3506–3513 (1993). [CrossRef]
  39. D. J. Ehrlich, J. Y. Tsac, eds., Laser Microfabrication: Thin Film Processing and Lithography (Academic, New York, 1989).
  40. C. Trappe, M. Schütze, R. Hannot, H. Kurz, “Use of ultrashort laser pulses for desorption from semiconductor surfaces and nonresonant post-ionization of sub-monolayers,” Fresenius Z. Anal. Chem. 346, 368–373 (1993). [CrossRef]
  41. E. Matthias, H. B. Nielsen, J. Reif, A. Rosen, E. Westin, “Multiphoton-induced desorption of positive ions from barium fluoride,” J. Vac. Sci. Technol. B 5, 1415–1422 (1987). [CrossRef]
  42. J. Reif, H. B. Nielsen, E. Matthias, E. Westin, A. Rosen, “Resonant multiphoton processes in laser-induced desorption,” J. Phys. Colloq. 7, 737–739 (1987).
  43. N. G. Stoffel, R. Riedel, E. Colavita, G. Margaritondo, R. F. J. Haglund, E. Taglauer, N. H. Tolk, “Photon-stimulated desorption of neutral sodium from alkali halides observed by laser-induced fluorescence,” Phys. Rev. B 32, 6805–6808 (1985). [CrossRef]
  44. T. Kokkinakis, G. C. Papavassiliou, “Surface plasmons in small copper particles,” Phys. Status Solidi B 77, K49–K51 (1976). [CrossRef]
  45. R. H. Ritchie, “Surface plasmons in solids,” Surface Sci. 34, 1–19 (1973). [CrossRef]
  46. T. Goetz, M. Vollmer, F. Traeger, “Desorption of metal atoms with laser light of different polarization,” Appl. Phys. A 57, 101–104 (1993). [CrossRef]
  47. X.-Y. Zhu, “Surface photochemistry,” Ann. Rev. Phys. Chem. 45, 113–144 (1994). [CrossRef]
  48. P. F. Robusto, R. Braunstein, “Optical measurements of the surface plasmon of copper,” Phys. Status Solidi B 107, 443–449 (1981). [CrossRef]
  49. M. J. Shea, R. N. Compton, “Surface-plasmon ejection of silver(1+) ions from laser irradiation of a roughened silver surface,” Phys. Rev. B 47, 9967–9970 (1993). [CrossRef]
  50. S. Herminghaus, P. Leiderer, “Nanosecond time-resolved study of pulsed laser ablation in the monolayer regime,” Appl. Phys. Lett. 58, 352–354 (1991). [CrossRef]
  51. X. Y. Zhu, J. M. White, M. Wolf, E. Hasselbrink, G. Ertl, “Polarization probe of excitation mechanisms in surface photochemistry,” Chem. Phys. Lett. 176, 459–466 (1991). [CrossRef]
  52. X. Y. Zhu, J. M. White, “The role of direct and substrate excitation in ultraviolet photolysis of phosgene on platinum(111),” J. Chem. Phys. 94, 1555–1563 (1991). [CrossRef]
  53. W. Hoheisel, M. Vollmer, F. Traeger, “Desorption of metal atoms with laser light: mechanistic studies,” Phys. Rev. B 48, 17463–17476 (1993). [CrossRef]
  54. R. Monreal, S. P. Apell, “Electromagnetic-field-enhanced desorption of atoms,” Phys. Rev. B 41, 7852–7855 (1990). [CrossRef]
  55. M. Vollmer, F. Traeger, “Analysis of fractional order thermal desorption,” Surf. Sci. 187, 445–462 (1987). [CrossRef]
  56. M. Birnbaum, “Semiconductor surface damage produced by ruby lasers,” J. Appl. Phys. 36, 161–172 (1965). [CrossRef]
  57. A. E. Siegman, P. M. Fauchet, “Stimulated Wood’s anomalies on laser-illuminated surfaces,” IEEE J. Quantum Electron. QE-32, 1384–1403 (1986). [CrossRef]
  58. J. E. Sipe, J. F. Young, J. S. Preston, H. M. v. Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27, 1141–1154 (1983). [CrossRef]
  59. J. F. Young, J. S. Preston, H. M. v. Driel, J. E. Sipe, “Laser-induced periodic surface structure. II. Experiments on Ge, Si, Al and brass,” Phys. Rev. B 27, 1155–1172 (1983). [CrossRef]
  60. J. F. Young, J. E. Sipe, H. M. v. Driel, “Laser-induced periodic surface structure. III. Fluence regimes, the role of feedback, and details of the induced topography in germanium,” Phys. Rev. B 30, 2001–2015 (1983). [CrossRef]
  61. O. S. Heavens, Optical Properties of Thin Solid Films (Dover, New York, 1991).
  62. A. W. Garrett, P. H. Hemberger, N. S. Nogar, “Resonant laser ablation in an ion trap mass spectrometer,” Spectrochim. Acta B (to be published).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited