OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 35, Iss. 15 — May. 20, 1996
  • pp: 2665–2671

Experimental comparison of single-shot broadband vibrational and dual-broadband pure rotational coherent anti-Stokes Raman scattering in hot air

Thomas Seeger and Alfred Leipertz  »View Author Affiliations

Applied Optics, Vol. 35, Issue 15, pp. 2665-2671 (1996)

View Full Text Article

Enhanced HTML    Acrobat PDF (234 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Broadband vibrational and dual-broadband pure rotational coherent anti-Stokes Raman scattering (CARS) have been compared in a high-temperature oven, in which the accuracy and single-shot precision of gas temperature and relative O2- and N2-concentration measurements in hot air were probed over a temperature range that is typical for many combustion processes. To ensure a realistic comparison, we used nearly the same experimental setup for both CARS techniques. Besides temperature information, dual-broadband pure rotational CARS offers the possibility of achieving simultaneous single-shot concentration measurements. The comparison shows that this technique also has significant advantages in temperature evaluation over a large temperature range in comparison with vibrational CARS.

© 1996 Optical Society of America

Original Manuscript: March 24, 1995
Revised Manuscript: November 27, 1995
Published: May 20, 1996

Thomas Seeger and Alfred Leipertz, "Experimental comparison of single-shot broadband vibrational and dual-broadband pure rotational coherent anti-Stokes Raman scattering in hot air," Appl. Opt. 35, 2665-2671 (1996)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Pealat, P. Bouchardy, M. Lefebvre, J. P. Taran, “Precision of multiplex CARS temperature measurements,” Appl. Opt. 24, 1012–1022 (1985). [CrossRef] [PubMed]
  2. D. R. Snelling, G. J. Smallwood, R. A. Sawchuk, T. Parameswaran, “Precision of multiplex CARS temperatures using both single mode and multimode pump lasers,” Appl. Opt. 26, 99–110 (1987). [CrossRef] [PubMed]
  3. S. Kröll, M. Alden, P.-E. Bengtsson, C. Löfström, “An evaluation of precision and systematic errors in vibrational CARS thermomety,” Appl. Phys. B 49, 445–453 (1989). [CrossRef]
  4. T. Klick, K. A. Marko, L. Rimai, “Broadband single-pulse CARS spectra in a fired internal combustion engine,” Appl. Opt. 20, 1178–1181 (1981). [CrossRef] [PubMed]
  5. A. C. Eckbreth, G. M. Dobbs, J. H. Stufflebeam, P. A. Tellex, “CARS temperature and species measurements in augmented jet engine exhaust,” Appl. Opt. 23, 1328–1339 (1984). [CrossRef] [PubMed]
  6. M. Alden, S. Wallin, “CARS experiments in a full-scale (10 × 10 m) industrial coal furnace,” Appl. Opt. 24, 2424–3437 (1985). [CrossRef]
  7. S. Kampmann, T. Seeger, A. Leipertz, “Simultaneous CARS and 2D laser Rayleigh thermometry in a contained technical swirl combuster,” Appl. Opt. 34, 2780–2786 (1995). [CrossRef] [PubMed]
  8. A. C. Eckbreth, T. J. Anderson, “Dual broadband CARS for simultaneous, multiple species measurements,” Appl. Opt. 24, 2731–2736 (1985). [CrossRef] [PubMed]
  9. A. C. Eckbreth, T. J. Anderson, G. M. Dobbs, “Multi-color CARS for hydrogen fueled scramjet applications,” Appl. Phys. B 45, 215–223 (1988). [CrossRef]
  10. M. Pealat, P. Magre, P. Bouchardy, G. Collin, “Simultaneous temperature and sensitive two-species concentration measurements by single-shot CARS,” Appl. Opt. 30, 1263–1273 (1991). [CrossRef] [PubMed]
  11. J. W. Flemming, A. B. Harvey, W. T. Barnes, “Pure rotational CARS thermometry,” in Temperature: Its Measurement and Control in Science and Industry, J. F. Schooley, ed. (American Institute of Physics, New York, 1982), Vol. 5, pp. 589–594.
  12. J. Zeng, J. B. Snow, D. V. Murphy, A. Leipertz, R. K. Chang, R. L. Farrow, “Experimental comparison of broadband rotational coherent anti-Stokes Raman scattering and broadband vibrational CARS in a flame,” Opt. Lett. 9, 341–343 (1984). [CrossRef]
  13. M. Alden, P.-E. Bengtsson, H. Edner, S. Kröll, D. Nilsson, “Rotational CARS: a comparison of different techniques with emphasis on accuracy in temperature determination,” Appl. Opt. 28, 3206–3219 (1989). [CrossRef] [PubMed]
  14. P.-E. Bengtsson, L. Martinsson, M. Alden, “Rotational CARS thermometry in sooting flames,” Combust. Sci. Technol. 81, 129–140 (1992). [CrossRef]
  15. P.-E. Bengtsson, L. Martinsson, M. Alden, B. Johansson, B. Lassesson, K. Marforio, G. Lundholm, “Dual broadband rotational CARS measurements in an IC engine,” in Twenty-Fifth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1994), pp. 1735–1742. [CrossRef]
  16. L. Martinsson, P.-E. Bengtsson, M. Alden, S. Kröll, J. Bonamy, “A test of different rotational Raman linewidth models: Accuracy of rotational coherent anti-Stokes Raman scattering thermometry in nitrogen from 295 to 1850 K,” J. Chem. Phys. 99, 2466–2477 (1993). [CrossRef]
  17. Th. Lasser, E. Magens, A. Leipertz, “Gas thermometry by Fourier analysis of rotational coherent anti-Stokes Raman scattering,” Opt. Lett. 10, 535–537 (1985). [CrossRef] [PubMed]
  18. A. Leipertz, E. Magens, T. Seeger, H. Spiegel, “Flame diagnostics by pure rotational CARS,” in Aerothermodynamics in Combustors, R. S. Lee, J. H. Whitelaw, T. S. Wung, eds. (Springer-Verlag, Berlin, 1992), pp. 107–117.
  19. A. Leipertz, T. Seeger, H. Spiegel, E. Magens, “Gas temperature measurements by pure rotational CARS,” in Temperature: Its Measurement and Control in Science and Industry, J. F. Schooley, ed. (American Institute of Physics, New York, 1992), Vol. 6, pp. 661–666.
  20. E. Magens, A. Leipertz, “Evaluation of accumulated pure rotational CARS spectra taken in mixing regions of flames,” in Coherent Raman Spectroscopy, E. M. Castelluci, R. Righini, P. Foggi, eds. (World Scientific, Singapore, 1993), pp. 141–146.
  21. E. Magens, “Nutzung von Rotations-CARS zur Temperaturund Konzentrations-messung in Flammen,” Ph.D. dissertation (Universität Erlangen-Nürnberg, Erlangen, Germany, 1992).
  22. S. Kröll, P.-E. Bengtsson, M. Alden, D. Nilsson, “Is rotational CARS an alternative to vibrational CARS for thermometry?” Appl. Phys. B 51, 25–30 (1990). [CrossRef]
  23. A. C. Eckbreth, T. J. Anderson, “Simultaneous rotational coherent anti-Stokes Raman spectroscopy and coherent Stokes Raman spectroscopy with arbitrary pump-Stokes spectral seperation,” Opt. Lett. 11, 496–498 (1986). [CrossRef] [PubMed]
  24. M. Alden, P.-E. Bengtsson, H. Edner, “Rotational CARS generation through a multiple four-color interaction,” Appl. Opt. 25, 4493–4500 (1986). [CrossRef] [PubMed]
  25. T. Seeger, “Anwendungsvergleich von Vibrations- und Rotations-CARS in de technischen Verbrennung,” Ph.D. dissertation (Universität Erlangen-Nürnberg, Erlangen, Germany, 1994).
  26. B. Attal-Tretout, P. Bouchardy, P. Magre, M. Pealat, J. P. Taran, “CARS in combustion: prospects and problems,” Appl. Phys. B 51, 17–24 (1990). [CrossRef]
  27. A. Gierulski, M. Noda, T. A. Yamamoto, G. Marowsky, A. Slenczka, “Pump-induced population changes in broadband coherent anti-Stokes Raman scattering,” Opt. Lett. 12, 608–610 (1987). [CrossRef] [PubMed]
  28. L. A. Rahn, R. E. Palmer, M. L. Koszykowski, D. A. Greenhalgh, “Comparison of rotationally inelastic collision models for Q-branch Raman spectra of N2,” Chem. Phys. Lett. 133, 513–516 (1987). [CrossRef]
  29. T. R. Gilson, I. R. Beattie, J. D. Black, D. A. Greenhalgh, S. N. Jenny, “Redetermination of some of the spectroscopic constants of the electronic ground state of di nitrogen 14N2, 14N, 15N, and 15N2 using coherent anti-Stokes Raman spectroscopy,” J. Raman Spectrosc. 9, 361–368 (1980). [CrossRef]
  30. C. M. Penny, R. L. St. Peters, M. L. Lapp, “Absolute rotational Raman cross sections for N2, O2 and CO2,” J. Opt. Soc. Am. 64, 712–716 (1974). [CrossRef]
  31. G. J. Rosaco, W. S. Hurst, “Measurement of resonant and nonresonant third order nonlinear susceptibilities by coherent Raman spectroscopy,” Phys. Rev. A 32, 281–299 (1985). [CrossRef]
  32. M. Berard, P. Lallemand, J. P. Cebe, M. Giraud, “Experimental and theoretical analysis of the temperature dependence of rotational Raman linewidth of oxygen,” J. Chem. Phys. 78, 672–687 (1983). [CrossRef]
  33. M. Aldén, Department of Combustion Physics, Lund Institute of Technology, P.O. Box 118, S-221 00 Lund, Sweden (personal communication, February1995).
  34. M. Woyde, W. Stricker, “The application of CARS for temperature measurements in high pressure combustion systems,” Appl. Phys. B 50, 519–525 (1990). [CrossRef]
  35. R. P. Lucht, “Three-laser coherent anti-Stokes Raman scattering measurements of two species,” Opt. Lett. 12, 78–80 (1987). [CrossRef] [PubMed]
  36. M. J. Cottereau, F. Grisch, J. J. Marie, “CARS measurements of temperature and species concentration in an IC engine,” Appl. Phys. B 51, 63–66 (1990). [CrossRef]
  37. D. Brüggemann, B. Wies, X. X. Zhang, T. Heinze, K. F. Knoche, “CARS spectroscopy for temperature and concentration measurements in a spark ignition engine,” in Combusting Flow Diagnostics, D. F. G. Durao, M. V. Heitor, J. H. Whitelaw, P. O. Witze, eds. (Kluwer, Dordrecht, the Netherlands, 1992), pp. 495–511. [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited