## Prediction of reverse radiation pressure by generalized Lorenz–Mie theory

Applied Optics, Vol. 35, Issue 15, pp. 2702-2710 (1996)

http://dx.doi.org/10.1364/AO.35.002702

Enhanced HTML Acrobat PDF (294 KB)

### Abstract

Radiation pressure exerted on a spherical particle by one extremely focused Gaussian beam is investigated by the use of generalized Lorenz–Mie theory (GLMT). Particular attention is devoted to reverse radiation pressure. GLMT predictions for different descriptions of the incident beam are compared with electrostriction predictions when the particle size is smaller than the wavelength and with geometric-optics predictions when the particle size is larger than the wavelength.

© 1996 Optical Society of America

**History**

Original Manuscript: February 17, 1995

Revised Manuscript: December 21, 1995

Published: May 20, 1996

**Citation**

K. F. Ren, G. Gréhan, and G. Gouesbet, "Prediction of reverse radiation pressure by generalized Lorenz–Mie theory," Appl. Opt. **35**, 2702-2710 (1996)

http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-35-15-2702

Sort: Year | Journal | Reset

### References

- A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970). [CrossRef]
- G. Roosen, “La lévitation optique de sphères,” J. Can. Phys. 57, 1260–1279 (1979). [CrossRef]
- A. Ashkin, J. M. Dziedzic, “Observation of light scattering from nonspherical particles using optical levitation,” Appl. Opt. 19, 660–668 (1980). [CrossRef] [PubMed]
- A. Ashkin, J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235, 1517–1520 (1987). [CrossRef] [PubMed]
- K. F. Ren, G. Gréhan, G. Gouesbet, “Radiation pressure forces exerted on a particle arbitrarily located in a Gaussian beam by using the generalized Lorenz–Mie theory, and associated resonance effects,” Opt. Commun. 108, 343–354 (1994). [CrossRef]
- G. Martinot-Lagarde, B. Pouligny, M. I. Angelova, G. Gréhan, G. Gouesbet, “Trapping and levitation of a dielectric sphere with off-centered Gaussian beams. II. GLMT analysis,” Pure Appl. Opt. 4, 571–585 (1995). [CrossRef]
- A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986). [CrossRef] [PubMed]
- T. C. B. Schut, G. Hesselink, B. G. Grooth, J. Greve, “Experimental and theoretical investigations on the validity of geometrical optics model for calculating the stability of optical traps,” Cytometry 12, 479–485 (1991). [CrossRef] [PubMed]
- A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61, 569–582 (1992). [CrossRef] [PubMed]
- R. Gussgard, T. Lindmo, I. Brevik, “Calculation of the trapping force in a strongly focused laser beam,” J. Opt. Soc. Am. B 9, 1922–1930 (1992). [CrossRef]
- H. Kogelnik, T. Li, “Laser beams and resonators,” Proc. IEEE 54, 1312–1329 (1965). [CrossRef]
- J. A. Lock, G. Gouesbet, “A rigorous justification of the localized approximation to the beam shape coefficients in the generalized Lorenz–Mie theory. I. On-axis beams,” J. Opt. Soc. Am. A 11, 2503–2515 (1994). [CrossRef]
- G. Gouesbet, J. A. Lock, “A rigorous justification of the localized approximation to the beam shape coefficients in the generalized Lorenz–Mie theory. II. Off-axis beams,” J. Opt. Soc. Am. A 11, 2516–2525 (1994). [CrossRef]
- G. Gouesbet, J. A. Lock, G. Gréhan, “Do you know what a laser beam is?”, presented at the Seventh Workshop on Two-Phase Flows, Erlangen, Germany, April 11–14, 1994.
- G. Gouesbet, J. A. Lock, G. Gréhan, “Partial wave representation of laser beams for use in light scattering calculations,” Appl. Opt. 34, 2133–2143 (1995). [CrossRef] [PubMed]
- G. Gouesbet, B. Maheu, G. Gréhan, “Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation,” J. Opt. Soc. Am. A 5, 1427–1443 (1988). [CrossRef]
- G. Gouesbet, G. Gréhan, B. Maheu, “Expressions to compute the coefficients gnm in the generalized Lorenz–Mie theory using finite series,” J. Opt. (Paris) 19, 35–48 (1988). [CrossRef]
- G. Gréhan, B. Maheu, G. Gouesbet, “Scattering of laser beams by Mie scatter centers: numerical results using a localized approximation,” Appl. Opt. 25, 3539–3548 (1986). [CrossRef] [PubMed]
- G. Gouesbet, G. Gréhan, B. Maheu, “Localized interpretation to compute all the coefficients gnm in the generalized Lorenz–Mie theory,” J. Opt. Soc. Am. A 7, 998–1007 (1990). [CrossRef]
- K. F. Ren, G. Gréhan, G. Gouesbet, “Localized approximation of generalized Lorenz–Mie theory: faster algorithm for computations of beam shape coefficients, gnm,” Part. Part. Syst. Charact. 9, 144–150 (1992). [CrossRef]
- K. F. Ren, G. Gréhan, G. Gouesbet, “Evaluation of laser sheet beam shape coefficients in the generalized Lorenz–Mie theory by using a localized approximation,” J. Opt. Soc. Am. A 11, 2072–2079 (1994). [CrossRef]
- J. A. Lock, “Improved Gaussian beam-scattering algorithm,” Appl. Opt. 34, 559–570 (1995). [CrossRef] [PubMed]
- L. W. Davis, “Theory of electromagnetic beams,” Phys. Rev. 19, 1177–1179 (1979). [CrossRef]
- J. P. Barton, D. R. Alexander, “Fifth-order corrected electromagnetic field components for fundamental Gaussian beam,” J. Appl. Phys. 66, 2800–2802 (1989). [CrossRef]

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

### Figures

Fig. 1 |
Fig. 2 |
Fig. 3 |

Fig. 4 |
Fig. 5 |
Fig. 6 |

Fig. 7 |
Fig. 8 |
Fig. 9 |

Fig. 10 |
Fig. 11 |
Fig. 12 |

Fig. 13 |
||

OSA is a member of CrossRef.