OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 35, Iss. 19 — Jul. 1, 1996
  • pp: 3362–3371

Experimental validation of Monte Carlo and finite-element methods for the estimation of the optical path length in inhomogeneous tissue

Eiji Okada, Martin Schweiger, Simon R. Arridge, Michael Firbank, and David T. Delpy  »View Author Affiliations


Applied Optics, Vol. 35, Issue 19, pp. 3362-3371 (1996)
http://dx.doi.org/10.1364/AO.35.003362


View Full Text Article

Enhanced HTML    Acrobat PDF (297 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

To validate models of light propagation in biological tissue, experiments to measure the mean time of flight have been carried out on several solid cylindrical layered phantoms. The optical properties of the inner cylinders of the phantoms were close to those of adult brain white matter, whereas a range of scattering or absorption coefficients was chosen for the outer layer. Experimental results for the mean optical path length have been compared with the predictions of both an exact Monte Carlo (MC) model and a diffusion equation, with two differing boundary conditions implemented in a finite-element method (FEM). The MC and experimental results are in good agreement despite poor statistics for large fiber spacings, whereas good agreement with the FEM prediction requires a careful choice of proper boundary conditions.

© 1996 Optical Society of America

History
Original Manuscript: September 26, 1995
Revised Manuscript: January 2, 1996
Published: July 1, 1996

Citation
Eiji Okada, Martin Schweiger, Simon R. Arridge, Michael Firbank, and David T. Delpy, "Experimental validation of Monte Carlo and finite-element methods for the estimation of the optical path length in inhomogeneous tissue," Appl. Opt. 35, 3362-3371 (1996)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-35-19-3362


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. F. Jöbsis, “Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters,” Science 198, 1264–1267 (1977). [CrossRef] [PubMed]
  2. C. C. Piantadosi, T. M. Hemstreet, F. F. Jöbsis, “Near infrared spectrophotometric monitoring of oxygen distribution to intact brain and skeletal muscle tissue,” Crit. Care Med. 14, 698–706 (1986). [CrossRef] [PubMed]
  3. O. Hazeki, A. Seyama, M. Tamura, “Near infrared spectrophotometric monitoring of hemoglobin and cytochrome aa3 in vivo,” Adv. Exp. Med. Biol. 215, 283–289 (1987). [PubMed]
  4. M. Ferrari, E. Zanette, I. Giannini, G. Sideri, C. Fieschi, A. Carpi, “Effect of carotid artery compression test on regional cerebral blood volume, hemoglobin oxygen saturation and cytochrome-c-oxidase redox level in cerebrovascular patients,” Adv. Exp. Med. Biol. 200, 213–222 (1986). [CrossRef] [PubMed]
  5. M. Cope, D. T. Delpy, “System for long-term measurement of cerebral blood and tissue oxygenation on newborn infants by near infrared transillumination,” Med. Biol. Eng. Comput. 26, 289–294 (1988). [CrossRef] [PubMed]
  6. M. Cope, D. T. Delpy, E. O. R. Reynolds, S. Wray, J. Wyatt, P. van der Zee, “Methods of quantitating cerebral near infrared spectroscopy data,” Adv. Exp. Med. Biol. 222, 183–189 (1988). [CrossRef] [PubMed]
  7. B. Chance, M. Maris, J. Sorge, M. Z. Zhang, “A phase modulation system for dual wavelength difference spectroscopy of hemoglobin deoxygenation in tissue,” in Time-Resolved Laser Spectroscopy in Biochemistry II, J. R. Lakowicz, ed., Proc. SPIE1204, 481–491 (1990). [CrossRef]
  8. S. R. Arridge, P. van der Zee, M. Cope, D. T. Delpy, “Reconstruction methods for infrared absorption imaging,” in Time-Resolved Spectroscopy and Imaging of Tissues, B. Chance, A. Katzir, eds., Proc. SPIE1431, 204–215 (1991). [CrossRef]
  9. L. Wang, P. P. Ho, C. Liu, G. Zhang, R. R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast optical Kerr gate,” Science 253, 769–771 (1991). [CrossRef] [PubMed]
  10. J. C. Hebden, D. T. Delpy, “Enhanced time-resolved imaging with a diffusion model of photon transport,” Opt. Lett. 19, 311–313 (1994). [CrossRef] [PubMed]
  11. M. Schweiger, S. R. Arridge, “Near-infrared imaging: photon measurement density functions,” Proc. SPIE 2389, 366–377 (1995). [CrossRef]
  12. S. R. Arridge, M. Schweiger, “Sensitivity to prior knowledge in optical tomographic reconstruction,” Proc. SPIE 2389, 378–388 (1995). [CrossRef]
  13. B. W. Pogue, M. S. Patterson, T. J. Farrel, “Forward and inverse calculations for 3-D frequency-domain diffuse optical tomography,” Proc. SPIE 2389, 328–339 (1995). [CrossRef]
  14. D. A. Benaron, J. P. Van Houten, W. F. Cheong, E. L. Kermit, R. A. King, “Early clinical results of time-of-flight optical tomography in a neonatal intensive care unit,” Proc. SPIE 2389, 582–596 (1995). [CrossRef]
  15. D. T. Delpy, M. Cope, P. van der Zee, S. R. Arridge, S. Wray, J. S. Watt, “Estimation of optical path length through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1433–1442 (1988). [CrossRef] [PubMed]
  16. M. S. Patterson, B. Chance, B. C. Wilson, “Time resolved reflectance and transmittance for the noninvasive measurement of tissue optical properties,” Appl. Opt. 28, 2331–2336 (1989). [CrossRef] [PubMed]
  17. B. C. Wilson, G. Adam, “A Monte Carlo model for the absorption and flux distributions of light in tissue,” Med. Phys. 10, 824–830 (1983). [CrossRef] [PubMed]
  18. P. van der Zee, D. T. Delpy, “Simulation of the point spread function for light in tissue by a Monte Carlo technique,” Adv. Exp. Med. Biol. 215, 179–191 (1987).
  19. M. S. Patterson, B. C. Wilson, D. Wyman, “The propagation of optical radiation in tissue I. Models of radiation transport and their application,” Lasers Med. Sci. 6, 155–168 (1990). [CrossRef]
  20. Y. Hasegawa, Y. Yamada, M. Tamura, Y. Nomura, “Monte Carlo simulation of light transmission through living tissues,” Appl. Opt. 30, 4515–4520 (1991). [CrossRef] [PubMed]
  21. S. R. Arridge, M. Cope, D. T. Delpy, “The theoretical basis for the determination of optical path length in tissue: temporal and frequency analysis,” Phys. Med. Biol. 37, 1531–1560 (1992). [CrossRef] [PubMed]
  22. W. Cui, L. E. Ostrander, “The relationship of surface reflectance measurements to optical properties of layered biological media,” IEEE Trans. Biomed. Eng. 39, 194–201 (1992). [CrossRef] [PubMed]
  23. J. C. Haselgrove, J. C. Schotland, J. S. Leigh, “Long-time behavior of photon diffusion in an absorbing medium: application to time-resolved spectroscopy,” Appl. Opt. 31, 2678–2683 (1992). [CrossRef] [PubMed]
  24. S. R. Arridge, M. Schweiger, M. Hiraoka, D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299–309 (1993). [CrossRef] [PubMed]
  25. S. R. Arridge, M. Schweiger, “Photon-measurement density functions. Part II: finite-element-method calculations,” Appl. Opt. 34, 8026–8027 (1995). [CrossRef] [PubMed]
  26. M. Schweiger, S. R. Arridge, M. Hiraoka, D. T. Delpy, “The finite element method for the propagation of light in scattering media: boundary and source conditions,” Med. Phys.1779–1792 (1995). [CrossRef] [PubMed]
  27. J. Haselgrove, J. Leigh, C. Yee, N. G. Wang, M. Maris, B. Chance, “Monte Carlo and diffusion calculations of photon migration in noninfinite highly scattering media,” in Time-Resolved Spectroscopy and Imaging of Tissues, B. Chance, A. Katzir, eds., Proc. SPIE1431, 30–41 (1991). [CrossRef]
  28. P. Donnelli, P. Bruscaglioni, A. Ismelli, G. Zaccanti, “Experimental validation of a Monte Carlo procedure for the evaluation of the effect of turbid medium on the point spread function of an optical system,” J. Mod. Opt. 38, 2189–2201 (1991). [CrossRef]
  29. K. M. Yoo, B. B. Das, R. R. Alfano, “Imaging of translucent objects hidden in highly scattering medium from the early portion of the diffuse component of a transmitted ultrafast laser pulse,” Opt. Lett. 17, 958–960 (1992). [CrossRef] [PubMed]
  30. M. Firbank, D. T. Delpy, “A design for a stable and reproducible phantom for use in near-infrared imaging and spectroscopy,” Phys. Med. Biol. 38, 847–853 (1993). [CrossRef]
  31. M. Firbank, M. Oda, D. T. Delpy, “An improved design for a stable and reproducible phantom material for use in near infrared spectroscopy and imaging,” Phys. Med. Biol. 40, 955–961 (1995). [CrossRef] [PubMed]
  32. P. van der Zee, S. R. Arridge, M. Cope, D. T. Delpy, “The effect of optode positioning on optical path length in near infrared spectroscopy of brain,” Adv. Exp. Med. Biol. 277, 79–84 (1990). [PubMed]
  33. M. Hiraoka, M. Firbank, M. Essenpreis, M. Cope, S. R. Arridge, P. van der Zee, D. T. Delpy, “A Monte Carlo investigation of optical path length in inhomogeneous tissue and its application to near-infrared spectroscopy,” Phys. Med. Biol. 38, 1859–1876 (1993). [CrossRef] [PubMed]
  34. M. Firbank, “The design, calibration and usage of a solid scattering and absorbing phantom for near infra red spectroscopy,” Ph.D. dissertation (Department of Medical Physics and Bioengineering, University College of London, London, 1994).
  35. A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, New York, 1978), Vol. 1.
  36. W. G. Egan, T. W. Hilgeman, Optical Properties of Inhomogeneous Materials (Academic, New York, 1979).
  37. S. R. Arridge, M. Schweiger, “Direct calculation of the moments of the distribution of photon time of flight in tissue with a finite-element method,” Appl. Opt. 34, 2683–2687 (1995). [CrossRef] [PubMed]
  38. W. F. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990). [CrossRef]
  39. P. van der Zee, M. Essenpreis, D. T. Delpy, “Optical properties of brain tissue,” in Photon Migration and Imaging in Random Media and Tissues, R. R. Alfano, B. Chance, eds., Proc. SPIE1888, 454–465 (1993). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited