OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 35, Iss. 19 — Jul. 1, 1996
  • pp: 3392–3403

Dynamic 193-nm optical properties of water

Paul T. Staveteig and Joseph T. Walsh, Jr.  »View Author Affiliations


Applied Optics, Vol. 35, Issue 19, pp. 3392-3403 (1996)
http://dx.doi.org/10.1364/AO.35.003392


View Full Text Article

Enhanced HTML    Acrobat PDF (271 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Previous assumptions that water is not a 193-nm chromophore during ArF excimer laser tissue ablation are based on room-temperature data and ignore spectroscopic literature that suggests a strong temperature dependence of far-ultraviolet water absorption. By the use of a Q-switched Er:YAG laser as a pump source and an ArF excimer laser as a probe source, thermal generation and relaxation of 193-nm water absorption were characterized under nonequilibrium high-temperature and high-pressure conditions. At volumetric energy densities as small as 2 kJ/cm3 relative to room temperature, the 193-nm absorption coefficient of water was measured to increase by more than 5 orders of magnitude. These results are consistent with the hypothesis that the absorption of 193-nm radiation by water may play a role in ArF excimer laser ablation of tissue.

© 1996 Optical Society of America

History
Original Manuscript: October 2, 1995
Revised Manuscript: March 6, 1996
Published: July 1, 1996

Citation
Paul T. Staveteig and Joseph T. Walsh, "Dynamic 193-nm optical properties of water," Appl. Opt. 35, 3392-3403 (1996)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-35-19-3392


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. A. Puliafito, R. F. Steinert, T. F. Deutsch, F. Hillenkamp, E. J. Dehm, C. M. Adler, “Excimer laser ablation of the cornea and lens: experimental studies,” Ophthalmology 92, 741–748 (1985). [PubMed]
  2. M. N. Ediger, G. H. Pettit, R. P. Weiblinger, C. H. Chen, “Transmission of corneal collagen during ArF excimer laser ablation,” Laser Surg. Med. 13, 204–210 (1993). [CrossRef]
  3. M. N. Ediger, G. H. Pettit, D. W. Hahn, “Enhanced ArF laser absorption in a collagen target under ablative conditions,” Laser Surg. Med. 15, 107–111 (1994). [CrossRef]
  4. G. H. Pettit, M. N. Ediger, R. P. Weiblinger, “Dynamic optical properties of collagen-based tissue during ArF excimer laser ablation,” Appl. Opt. 32, 488–493 (1993). [CrossRef] [PubMed]
  5. J. P. Cummings, J. T. Walsh, “Erbium laser ablation: the effect of dynamic optical properties,” Appl. Phys. Lett. 62, 1988–1990 (1993). [CrossRef]
  6. J. T. Walsh, J. P. Cummings, “Effect of the dynamic optical properties of water on midinfrared laser ablation,” Laser Surg. Med. 15, 295–305 (1994). [CrossRef]
  7. G. M. Davis, M. C. Gower, “Time-resolved transmission studies of poly(methyl methacrylate) films during ultraviolet laser ablative photodecomposition,” J. Appl. Phys. 61, 2090–2092 (1987). [CrossRef]
  8. S. Kuper, M. Stuke, “Femtosecond UV excimer laser ablation,” Appl. Phys. B 44, 199–204 (1987). [CrossRef]
  9. R. Al-Dhahir, P. Dyer, J. Sidhu, C. Foulkes-Williams, G. Oldershaw, “Dual excimer and CO2 laser etching studies of polyethylene terephthalate,” Appl. Phys. B 49, 435–440 (1989). [CrossRef]
  10. J. Friscoli, Y. Hefetz, T. F. Deutsch, “Time-resolved UV absorption of polyimide: implications for laser ablation,” Appl. Phys. B 52, 168–172 (1991). [CrossRef]
  11. R. Srinivasan, P. E. Dyer, B. Braren, “Far-UV laser ablation of cornea. Photoacoustic studies,” Lasers Surg. Med. 6, 514–527 (1984). [CrossRef]
  12. R. R. Krueger, S. L. Trokel, “Quantitation of corneal ablation by ultraviolet laser light,” Ophthalmology 103, 1741– 1742 (1985).
  13. S. L. Jacques, D. J. McAuliffe, I. H. Blank, J. A. Parrish, “Controlled removal of human stratum corneum by pulsed laser,” J. Invest. Dermatol. 88, 88–93 (1987). [CrossRef] [PubMed]
  14. G. H. Pettit, M. N. Ediger, “Corneal-tissue absorption coefficients for 193- and 213-nm ultraviolet radiation,” Appl. Opt. 19, 3386–3391 (1996). [CrossRef]
  15. G. H. Pettit, M. N. Ediger, “Pump/probe transmission measurements of corneal tissue during excimer laser ablation,” Laser Surg. Med. 13, 363–367 (1993). [CrossRef]
  16. G. C. Na, “UV spectroscopic characterization of type I collagen,” Collagen Rel. Res. 8, 315–330 (1988). [CrossRef]
  17. M. S. Kitai, V. L. Popkov, V. A. Semchisen, A. A. Kharizov, “The physics of UV laser cornea ablation,” IEEE J. Quantum Electron. 27, 302–307 (1991). [CrossRef]
  18. S. Jain, T. W. Hahn, W. Chen, W. Stark, L. Chen, D. T. Azar, “Modulation of corneal wound healing following 193-nm excimer laser keratectomy using free radical scavengers,” Invest. Ophthalmol. Vis. Sci. 35, 2015 (1994).
  19. G. H. Pettit, M. N. Ediger, D. W. Hahn, R. J. Landry, R. P. Weiblinger, K. M. Morehouse, “Electron paramagnetic resonance spectroscopy of free radicals in corneal tissue following excimer laser irradiation,” in Laser–Tissue Interaction VI, S. L. Jacques, ed., Proc. SPIE2391, 96–99 (1995). [CrossRef]
  20. S. Preuss, M. Spath, Y. Zhang, M. Stuke, “Time resolved dynamics of subpicosecond laser ablation,” Appl. Phys. Lett. 62, 3049–3051 (1993). [CrossRef]
  21. S. Preuss, M. Stuke, “Subpicosecond ultraviolet laser ablation of diamond: nonlinear properties at 248 nm and time-resolved characterization of ablation dynamics,” Appl. Phys. Lett. 67, 338–340 (1995). [CrossRef]
  22. K. Watanabe, M. Zelikoff, “Absorption coefficients of liquid water and aqueous solutions in the far-ultraviolet,” J. Opt. Soc. Am. 43, 753–755 (1953). [CrossRef]
  23. G. D. Kerr, R. N. Hamm, M. W. Williams, R. D. Birkhoff, L. R. Painter, “Optical and dielectric properties of water in the vacuum ultraviolet,” Phys. Rev. A 5, 2523–2527 (1972). [CrossRef]
  24. L. R. Painter, R. D. Birkhoff, E. T. Arakawa, “Optical measurements of liquid water in the vacuum ultraviolet,” J. Chem. Phys. 51, 243–251 (1969). [CrossRef]
  25. K. Dressler, O. Schnepp, “Absorption spectra of solid methane, ammonia, and ice in the vacuum ultraviolet,” J. Chem. Phys. 33, 270–274 (1960). [CrossRef]
  26. G. Herzberg, Molecular Spectra and Molecular Structure (Van Nostrand, New York, 1967), Vol. 1.
  27. L. R. Painter, R. N. Hamm, E. T. Arakawa, R. D. Birkhoff, “Electronic properties of liquid water in the vacuum ultraviolet,” Phys. Rev. Lett. 21, 282–284 (1968). [CrossRef]
  28. M. B. Robin, Higher Excited States of Polyatomic Molecules (Academic, New York, 1974), Vol. 1.
  29. P. G. Wilkinson, H. L. Johnston, “The absorption spectra of methane, carbon dioxide, water vapor, and ethylene in the vacuum ultraviolet,” J. Chem. Phys. 18, 190–193 (1950). [CrossRef]
  30. J. L. Weeks, M. A. C. Meaburn, S. Gordon, “Absorption coefficients of liquid water and aqueous solutions in the far ultraviolet,” Radiat. Res. 19, 559–567 (1963). [CrossRef] [PubMed]
  31. M. Halmann, I. Platzner, “Temperature dependence of absorption of liquid water in the far ultraviolet region,” J. Phys. Chem. 70, 580–581 (1966). [CrossRef]
  32. S. Bratoz, “Electronic theories of hydrogen bonding,” Adv. Quantum Chem. 3, 209–237 (1967). [CrossRef]
  33. G. C. Pimental, “Hydrogen bonding and electronic transitions: the role of the Franck–Condon principle,” J. Am. Chem. Soc. 79, 3323–33261957). [CrossRef]
  34. G. J. Brealey, M. Kasha, “The role of hydrogen bonding in the n → p* blue shift phenomenon,” J. Am. Chem. Soc. 77, 4462–4468 (1955). [CrossRef]
  35. A. L. Lehninger, D. L. Nelson, M. C. Cox, Principles of Biochemistry (Worth, New York, 1993), Chap. 1.
  36. W. H. de Jeu, “A CNDO calculation of the hydrogen bond and the blue shift in formaldehyde–water,” Chem. Phys. Lett. 7, 153–155 (1970). [CrossRef]
  37. D. Haulser, P. Anderson, R. Schinke, “State to state photodissociation of H2O in the first absorption band,” J. Chem. Phys. 87, 3949–3965 (1987). [CrossRef]
  38. P. Andreson, V. Beushausen, D. Hausler, H. W. Luif, E. W. Rothe, “Strong propensity rules in the photodissociation of a single rotational quantum state of vibrationally excited water,” J. Chem. Phys. 83, 1429–1430 (1985). [CrossRef]
  39. J. P. Cummings, “Pulsed infrared laser ablation of tissue: effect of dynamic optical properties of water,” Ph.D. dissertation (Northwestern University, Evanston, Ill., 1993).
  40. K. L. Vodopyanov, “Bleaching of water by intense light at the maximum of the 1 –3 μm absorption band,” Sov. Phys. JETP 70, 114–121 (1990).
  41. J. G. Bayly, V. B. Kartha, W. H. Stevens, “The absorption spectra of liquid phase H2O, HDO and D2O from 0.7 μm to 10 μm,” Infrared Phys. 3, 211–223 (1963). [CrossRef]
  42. K. L. Vodopyanov, “Saturation studies of H2O and HDO near 3400 cm−1 using intense picosecond laser pulses,” J. Chem. Phys. 94, 5389–5393 (1991). [CrossRef]
  43. B. E. A. Saleh, M. C. Teich, Fundamentals of Photonics (Wiley, New York, 1991), Chap. 5. [CrossRef]
  44. A. F. Mills, Heat Transfer (Irwin, Boston, Mass., 1992), Chap. 3.
  45. J. E. Andrew, P. E. Dyer, D. Forster, P. H. Key, “Direct etching of polymeric materials using a XeCl laser,” Appl. Phys. Lett. 43, 717–719 (1983). [CrossRef]
  46. E. H. Schallen, C. C. Awh, E. de Juan, “Rate-dependent, nonlinear photoablation of ocular tissue at 308 nm,” Laser Surg. Med. 15, 99–106 (1994). [CrossRef]
  47. G. Oldershaw, “Excimer laser ablation of polyethylene tereph-thalate. Prediction of threshold fluences from thermolysis rate,” Chem. Phys. Lett. 186, 23–26 (1991). [CrossRef]
  48. P. Dyer, G. Oldershaw, J. Sidhu, “Ultraviolet-laser-induced ablation of poly(ethylene terephthalate),” J. Phys Chem. 95, 10004–10009 (1991). [CrossRef]
  49. S. Kuper, J. Brannon, K. Brannon, “Threshold behavior in polyimide photoablation: single-shot rate measurements and surface-temperature modeling,” Appl. Phys. A 56, 43–50 (1993). [CrossRef]
  50. S. Lazare, V. Grainier, “Excimer laser light induced ablation and reactions at polymer surfaces as measured with a quartz-crystal microbalance,” J. Appl. Phys. 63, 2110–2115 (1988). [CrossRef]
  51. B. Danielzik, N. Fabricius, M. Rowenkamp, D. von der Linde, “Velocity distribution of molecular fragments from polymethylmethacrylate irradiated with UV laser pulses,” Appl. Phys. Lett. 48, 212–214 (1986). [CrossRef]
  52. G. M. Davis, M. C. Gower, C. Fotakis, T. Efthimiopoulos, P. Argyrakis, “Spectroscopic studies of ArF laser photoablation of PMMA,” Appl. Phys. A. 36, 27–30 (1985). [CrossRef]
  53. P. Dyer, J. Sidhu, “Excimer laser ablation and thermal coupling efficiency to polymer films,” J. Appl. Phys. 57, 1420–1422 (1985). [CrossRef]
  54. G. Gorodetsky, T. G. Kazyaka, R. L. Melcher, R. Srinivasan, “Calorimetric and acoustic study of ultraviolet laser ablation of polymers,” Appl. Phys. Lett. 46, 828–830 (1985). [CrossRef]
  55. P. E. Dyer, R. Srinivasan, “Nanosecond photoacoustic studies on ultraviolet laser ablation of organic polymers,” Appl. Phys. Lett. 48, 445–447 (1986). [CrossRef]
  56. V. Venugopalan, “The thermodynamic response of polymers and biological tissues to pulsed laser irradiation,” Sc. D. dissertation (MIT, Cambridge, Mass., 1994).
  57. J. R. Feld, C. P. Lin, C. A. Puliafito, “Energy balance studies help explain the mechanism of excimer laser ablation of the cornea at 193 nm,” Invest. Ophthalmol. Vis. Sci. 35, 2011 (1994).
  58. P. E. Dyer, R. K. Al-Dhahir, “Transient photoacoustic studies of laser tissue ablation,” in Laser–Tissue Interaction, S. L. Jacques, A. Katzir, eds., Proc. SPIE1202, 46–60 (1990). [CrossRef]
  59. D. Palanker, I. Hemo, I. Turovets, A. Lewis, “Soft tissue removal by the 193 nm excimer laser in a strongly absorbing liquid environment,” in Laser–Tissue Interaction V, S. L. Jacques, eds., Proc. SPIE2134A, 460–469 (1994).
  60. D. W. Hahn, M. N. Ediger, G. H. Pettit, “Dynamics of ablation plume particles generated during excimer laser corneal ablation,” Laser Surg. Med. 16, 384–389 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited