OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 35, Iss. 19 — Jul. 1, 1996
  • pp: 3447–3458

Enhanced frequency-domain optical image reconstruction in tissues through total-variation minimization

Keith D. Paulsen and Huabei Jiang  »View Author Affiliations


Applied Optics, Vol. 35, Issue 19, pp. 3447-3458 (1996)
http://dx.doi.org/10.1364/AO.35.003447


View Full Text Article

Enhanced HTML    Acrobat PDF (546 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Optical image reconstruction in heterogeneous turbid media is sensitive to noise, especially when the signal-to-noise ratio of a measurement system is low. A total-variation-minimization-based iterative algorithm is described in this paper that enhances the quality of reconstructed images with frequency-domain data over that obtained previously with a regularized least-squares approach. Simulation experiments in an 8.6-cm-diameter circular heterogeneous region with low- and high-contrast levels between the target and the background show that the quality of the reconstructed images can be improved considerably when total-variation minimization is included. These simulated results are further verified and confirmed by images reconstructed from experimental data by the use of the same geometry and optically tissue-equivalent phantoms. Measures of imaging performance, including the location, size, and shape of the reconstructed heterogeneity, along with absolute errors in the predicted optical-property values are used to quantify the enhancements afforded by this new approach to optical image reconstruction with diffuse light. The results show improvements of up to 5 mm in terms of geometric information and an order of magnitude or more decrease in the absolute errors in the reconstructed optical-property values for the test cases examined.

© 1996 Optical Society of America

History
Original Manuscript: October 2, 1995
Revised Manuscript: January 25, 1996
Published: July 1, 1996

Citation
Keith D. Paulsen and Huabei Jiang, "Enhanced frequency-domain optical image reconstruction in tissues through total-variation minimization," Appl. Opt. 35, 3447-3458 (1996)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-35-19-3447

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you are accessing the full text through a member bundle, please use the Enhanced HTML link to gain access to the citation lists and other restricted features. Note that accessing both the PDF and HTML versions of an article will count as only one download against your account.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you are accessing the full text through a member bundle, please use the Enhanced HTML link to gain access to the citation lists and other restricted features. Note that accessing both the PDF and HTML versions of an article will count as only one download against your account.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you wish to use one of your free member downloads to view the figures, click "Enhanced HTML" above and access the figures from the article itself or from the navigation tab.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you are accessing the full text through a member bundle, please use the Enhanced HTML link to gain access to the citation lists and other restricted features. Note that accessing both the PDF and HTML versions of an article will count as only one download against your account.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited