OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 35, Iss. 19 — Jul. 1, 1996
  • pp: 3506–3513

Robust phase-unwrapping method for phase images with high noise content

Paul G. Charette and Ian W. Hunter  »View Author Affiliations


Applied Optics, Vol. 35, Issue 19, pp. 3506-3513 (1996)
http://dx.doi.org/10.1364/AO.35.003506


View Full Text Article

Enhanced HTML    Acrobat PDF (481 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a robust method of phase unwrapping that was designed for use on noisy phase images with arbitrary fringe patterns. The method proceeds by first identifying distinct regions between fringe boundaries in an image and then phase shifting the regions with respect to one another by multiples of 2π to unwrap the phase. Image pixels are segmented between interfringe and fringe boundary areas by fitting a plane model using least squares to overlapping domains centered on all pixels. The method is tolerant of fringe gradient degradation caused by noise, filtering artifacts, and finite instrumentation bandwidth.

© 1996 Optical Society of America

History
Original Manuscript: July 7, 1995
Revised Manuscript: December 13, 1995
Published: July 1, 1996

Citation
Paul G. Charette and Ian W. Hunter, "Robust phase-unwrapping method for phase images with high noise content," Appl. Opt. 35, 3506-3513 (1996)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-35-19-3506

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you are accessing the full text through a member bundle, please use the Enhanced HTML link to gain access to the citation lists and other restricted features. Note that accessing both the PDF and HTML versions of an article will count as only one download against your account.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you are accessing the full text through a member bundle, please use the Enhanced HTML link to gain access to the citation lists and other restricted features. Note that accessing both the PDF and HTML versions of an article will count as only one download against your account.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you wish to use one of your free member downloads to view the figures, click "Enhanced HTML" above and access the figures from the article itself or from the navigation tab.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you are accessing the full text through a member bundle, please use the Enhanced HTML link to gain access to the citation lists and other restricted features. Note that accessing both the PDF and HTML versions of an article will count as only one download against your account.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited