OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 35, Iss. 21 — Jul. 20, 1996
  • pp: 4046–4052

Detection of NO and NO2 by (2 + 2) resonance-enhanced multiphoton ionization and photoacoustic spectroscopy near 454 nm

R. L. Pastel and R. C. Sausa  »View Author Affiliations


Applied Optics, Vol. 35, Issue 21, pp. 4046-4052 (1996)
http://dx.doi.org/10.1364/AO.35.004046


View Full Text Article

Enhanced HTML    Acrobat PDF (250 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Trace concentrations of NO and NO2 are detected with a dye laser operating near 454 nm. NO is detected by a (2 + 2) resonance-enhanced multiphoton ionization process by means of NO A2+X2Π(0, 0) transitions with miniature electrodes, and NO2 is detected by a one-photon absorption photoacoustic process by means of NO 2 A ˜ 2 B 1 ( 0 , 8 , 0 ) X ˜ 2 A 1 ( 0 , 0 , 0 ) transitions with a miniature microphone. Rotationally resolved excitation spectra show that the spectral resolution is sufficiently high to identify these species at 1 atm. The technique’s analytical merits are evaluated as functions of concentration, pressure, and laser intensities. Low laser intensities favor NO2 photoacoustic detection whereas high laser intensities favor NO ionization. Limits of detection (signal-to-noise ratio 3) of 160 parts in 109 for NO and 400 parts in 109 for NO2 are determined at 1 atm for a 10-s integration time. Signal response and noise analyses show that three decades of NO/NO2 mixtures can be measured with a computational relative error in concentration that is three times the relative error in measuring the NO and NO signals.2

© 1996 Optical Society of America

History
Original Manuscript: November 8, 1995
Revised Manuscript: January 30, 1996
Published: July 20, 1996

Citation
R. L. Pastel and R. C. Sausa, "Detection of NO and NO2 by (2 + 2) resonance-enhanced multiphoton ionization and photoacoustic spectroscopy near 454 nm," Appl. Opt. 35, 4046-4052 (1996)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-35-21-4046


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. B. Simeonsson, R. C. Sausa, “A critical review of laser photofragmentation/fragment detection for gas-phase chemical analysis,” Appl. Spectrosc. Rev., to be published.
  2. L. Jaegle, C. R. Webster, R. D. May, D. W. Fahey, E. L. Woodbridge, E. R. Keim, R. S. Gao, M. H. Proffitt, R. M. Stimple, R. J. Salawith, S. C. Wofsy, L. Pfister, “In situ measurements of the NO2/NO ratio for testing atmospheric photochemical models,” Geophys. Res. Lett. 21, 2555–2558 (1994). [CrossRef]
  3. H. J. Kolsch, P. Rairoux, J. P. Wolf, L. Woste, “Simultaneous NO and NO2 DIAL measurement using BBO crystals,” Appl. Opt. 26, 2052–2056 (1989). [CrossRef]
  4. J. A. Last, W.-M. Sun, H. Witschi, “Ozone, NO, and NO2: oxidation and air pollutants and more,” Environ. Health Perspect. 102, Suppl. 10, 179 (1994). [PubMed]
  5. G. W. Lemire, J. B. Simeonsson, R. C. Sausa, “Monitoring of vapor-phase nitrocompounds using 226-nm radiation: fragmentation with subsequent NO resonance-enhanced multiphoton ionization detection,” Anal. Chem. 65, 529–533 (1993). [CrossRef]
  6. J. B. Simeonsson, G. W. Lemire, R. C. Sausa, “Trace detection of nitrocompounds by ArF laser photofragmentation/ionization spectrometry,” Appl. Spectrosc. 47, 1907–1912 (1993). [CrossRef]
  7. A. Marshall, A. Clark, K. W. D. Ledingham, J. Sander, R. P. Singhal, C. Kosmidis, R. M. Deas, “Detection and identification of explosives compounds using laser ionization time-of-flight techniques,” Rapid Commun. Mass Spectrosc. 8, 521–526 (1994). [CrossRef]
  8. A. Fried, “A study of measurement interference in the opto-acoustic detection of NO2 by argon-ion laser excitation,” Appl. Spectrosc. 36, 562–565 (1982). [CrossRef]
  9. P. C. Claspy, C. Ha, Y. H. Pao, “Optoacoustic detection of NO2 using a pulsed dye laser,” Appl. Opt. 16, 2972–2973 (1977). [CrossRef] [PubMed]
  10. R. W. Terhune, J. E. Anderson, “Spectrophone measurements of the absorption of visible by aerosols in the atmosphere,” Opt. Lett. 1, 70–72 (1973). [CrossRef]
  11. A. M. Angus, E. E. Marinero, M. J. Colles, “Opto-acoustic spectroscopy with a visible CW dye laser,” Optic Commun. 14, 223–225 (1975). [CrossRef]
  12. J. B. Simeonsson, G. W. Lemire, R. C. Sausa, “Laser-induced photofragmentation/photoionization spectrometry: a method for detection ambient oxides of nitrogen,” Anal. Chem. 66, 2272–2278 (1994). [CrossRef]
  13. V. M. Donnelly, F. Kaufman, “Fluorescence lifetime studies of NO2. II. Dependence of the perturbed 2B2 state lifetimes on excitation energy,” J. Chem. Phys. 69, 1456–1460 (1978). [CrossRef]
  14. T. Imasake, T. Ogawa, N. Ishibashi, “Inter- and intramolecular radiationless transitions of NO2 at around 454.6 nm,” Chem. Phys. 45, 273–278 (1980). [CrossRef]
  15. Y. Hass, P. L. Houston, J. H. Clark, C. B. Moore, H. Rosen, P. Robrish, “Long-lived Ka = 0, 2B1 states of NO2: a direct measurements using a tunable dye laser,” J. Chem. Phys. 63, 4195–4197 (1975). [CrossRef]
  16. R. S. Tapper, T. L. Whetten, G. S. Ezra, E. R. Grant, “The role of near-resonant intermediate states in the two-photon excitation of NO2: origin bands in bent-to-linear transitions,” J. Phys. Chem. 88, 1273–1275 (1984). [CrossRef]
  17. R. J. S. Morrison, B. H. Rockney, E. R. Grant, “Multiphoton ionization of NO2: spectroscopy and dynamics,” J. Chem. Phys. 75, 2643–2651 (1981). [CrossRef]
  18. L. Bigio, R. S. Tapper, E. R. Grant, “The role of near-resonant intermediate states in the two-photon excitation of NO2: the distinct dynamics of two-photon photofragmentation,” J. Phys. Chem. 88, 1271–1273 (1984). [CrossRef]
  19. T. Imasaka, T. Ogawa, N. Ishibashi, “Time-resolved spectroscopy on the excited electronic states of NO2 in the neighborhood of 454.6 nm,” J. Chem. Phys. 70, 881–885 (1979). [CrossRef]
  20. J. L. Hardwick, “Fluorescence from the 2B1 state of NO2 excited at 4545 Å,” J. Mol. Spectrosc. 66, 248–258 (1977). [CrossRef]
  21. A. E. Douglas, K. P. Huber, “The absorption spectrum of NO2 in 3700–4600 Å region,” Can. J. Phys. 43, 74 (1965). [CrossRef]
  22. D. S. Zakheim, P. M. Johnson, “Rate equation of molecular multiphoton ionization dynamics,” J. Chem. Phys. 46, 263– 272 (1980).
  23. C. K. Williamson, R. L. Pastel, R. C. Sausa, “Detection of ambient NO by laser-induced photoacoustic spectrometry using A 2∑+–X2Π(0,0) transitions near 226 nm,” Appl. Spectrosc. 50, 205–210 (1996). [CrossRef]
  24. S. D. Conte, C. de Boor, Elementary Numerical Analysis (McGraw-Hill, New York, 1972).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited