OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 35, Iss. 21 — Jul. 20, 1996
  • pp: 4053–4058

Ultrasensitive, visible tunable diode laser detection of NO2

David M. Sonnenfroh and Mark G. Allen  »View Author Affiliations

Applied Optics, Vol. 35, Issue 21, pp. 4053-4058 (1996)

View Full Text Article

Enhanced HTML    Acrobat PDF (204 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Recent advances in room-temperature visible diode lasers and ultrasensitive detection techniques have been exploited to create a highly sensitive tunable diode laser absorption technique for in situ monitoring of NO2 in the lower troposphere. High sensitivity to NO2 is achieved by probing the visible absorption band of NO2 with an AlGaInP diode laser at 640 or 670 nm combined with a balanced ratiometric electronic detection technique. We have demonstrated a sensitivity of 3.5 × 1010 cm−3 for neat NO2 in a 1-m path at 640 nm and have estimated a sensitivity for ambient operation of 5 ppbv m (10 ppbv m at 670 nm), where ppbvm is parts in 109 by volume per meter of absorption path length, from measured pressure-broadening coefficients.

© 1996 Optical Society of America

Original Manuscript: September 14, 1995
Revised Manuscript: February 14, 1996
Published: July 20, 1996

David M. Sonnenfroh and Mark G. Allen, "Ultrasensitive, visible tunable diode laser detection of NO2," Appl. Opt. 35, 4053-4058 (1996)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. J. Finlayson-Pitts, J. N. Pitts, Atmospheric Chemistry (Wiley, New York, 1986), pp. 368–369.
  2. A. C. Delany, “Fast-response chemical sensors used for eddy correlation flux measurements,” in Measurement Challenges in Atmospheric Chemistry, L. Newman, ed. (American Chemical Society, Washington, D.C., 1993), Chap. 3, pp. 91–100. [CrossRef]
  3. C. R. Webster, R. D. May, C. A. Trimble, R. G. Chave, J. Kendall, “Aircraft (ER-2) laser infrared absorption spectrometer (ALIAS) for in-situ stratospheric measurements of HCl, N2O, CH4, NO2, HNO3,” Appl. Opt. 33, 454–472 (1994). [CrossRef] [PubMed]
  4. J. Reid, M. El-Sherbiny, B. K. Garside, E. A. Ballik, “Sensitivity limits of a tunable diode laser spectrometer, with application to the detection of NO2 at the 100-ppt level,” Appl. Opt. 19, 3349–3354 (1980). [CrossRef] [PubMed]
  5. P. C. D. Hobbs, “Shot-noise limited optical measurements at baseband with noisy laser,” in Laser Noise, R. Roy, ed., Proc. SPIE1376, 216–221 (1990).
  6. K. L. Haller, P. C. D. Hobbs, “Double beam laser absorption spectroscopy: shot noise-limited performance at baseband with a novel electronic noise canceller,” in Optical Methods for Ultrasensitive Detection and Analysis: Techniques and Applications, B. L. Fearey, Proc. SPIE1435, 298–309 (1991).
  7. M. G. Allen, K. L. Carleton, S. J. Davis, W. J. Kessler, C. E. Otis, D. A. Palombo, D. M. Sonnenfroh, “Ultrasensitive dual-beam absorption and gain spectroscopy: applications for near-IR and visible diode laser sensors,” Appl. Opt. 34, 3240–3249 (1995). [CrossRef] [PubMed]
  8. W. B. DeMore, S. P. Sander, D. M. Golden, M. J. Molina, R. F. Hampson, M. J. Korylo, C. J. Howard, A. R. Ravishankara, “Chemical kinetics and photochemical data for use in stratospheric modeling,” JPL Pub. 90-1 (Jet Propulsion Laboratory, Pasadena, Calif., 1990), pp. 92–95.
  9. D. K. Hsu, D. L. Monts, R. N. Zare, Spectral Atlas of Nitrogen Dioxide: 5530 to 6480 Angstroms (Academic, New York, 1978), pp. 456–457.
  10. W. Schneider, G. K. Moortgat, G. S. Tyndall, J. P. Burrows, “Absorption cross sections of NO2 in the uv and visible region (200–700 nm) at 298 K,” J. Photochem. Photobiol. A 40, 195–217 (1987). [CrossRef]
  11. H. V. Malmstadt, C. G. Enke, S. R. Crouch, G. Horlick, Optimization of Electronic Measurements (Benjamin/Cummings, Menlo Park, Calif., 1974), pp. 98–105.
  12. P. Horowitz, W. Hill, The Art of Electronics (Cambridge U. Press, Cambridge, 1980), p. 306.
  13. W. Lenth, M. Gehrtz, “Sensitive detection of NO2 using high-frequency heterodyne spectroscopy with a GaAlAs diode laser,” Appl. Phys. Lett. 47, 1263–1265 (1985). [CrossRef]
  14. E. E. Whiting, “An empirical approximation to the Voigt profile,” J. Quant. Spectrosc. Radiat. Transfer 8, 1379–1384 (1968). [CrossRef]
  15. J. J. Olivero, R. L. Longbothum, “Empirical fits to the Voigt line width: A brief review,” J. Quant. Spectrosc. Radiat. Transfer 17, 233–236 (1977). [CrossRef]
  16. H. Riris, C. B. Carlisle, L. W. Carr, D. E. Cooper, R. U. Martinelli, R. J. Menna, “Design of an open path near-infrared diode laser sensor: application to oxygen, water, and carbon dioxide vapor detection,” Appl. Opt. 33, 7059–7066 (1994). [CrossRef] [PubMed]
  17. N. Goldstein, J. Lee, F. Bien, “Automated remote monitoring of toxic gases with diode-laser-based sensor systems,” in Tunable Diode Laser Spectroscopy, Lidar, and DIAL Techniques for Environmental and Industrial Measurements, A. Fried, D. K. Killinger, H. I. Schiff, eds., Proc. SPIE2112, 130–139 (1993).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited