OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 35, Iss. 21 — Jul. 20, 1996
  • pp: 4086–4095

Rational design of fiber-optic probes for visible and pulsed-ultraviolet resonance Raman spectroscopy

L. Shane Greek, H. Georg Schulze, Charles A. Haynes, Michael W. Blades, and Robin F. B. Turner  »View Author Affiliations

Applied Optics, Vol. 35, Issue 21, pp. 4086-4095 (1996)

View Full Text Article

Enhanced HTML    Acrobat PDF (270 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigated the performance of fiber-optic resonance Raman probes with a series of experiments to determine the working curves of such probes using model analytes and to investigate the effects of absorbing media. A computer model designed to simulate these experiments is presented, and numerical results are found to be in agreement with the experimental data. Design considerations resulting from these studies are discussed, and novel designs for overcoming problems of coupling efficiency, damage threshold, and sensitivity in absorbing samples are presented. These findings are applied to the design of fiber-optic probes for ultraviolet resonance Raman spectroscopy involving nanosecond pulsed-ultraviolet excitation (225 and 266 nm). These probes have been used to collect what is, to our knowledge, the first reported fiber-optic-linked ultraviolet resonance Raman spectra of tryptophan and DNA.

© 1996 Optical Society of America

Original Manuscript: October 13, 1995
Revised Manuscript: March 14, 1996
Published: July 20, 1996

L. Shane Greek, H. Georg Schulze, Charles A. Haynes, Michael W. Blades, and Robin F. B. Turner, "Rational design of fiber-optic probes for visible and pulsed-ultraviolet resonance Raman spectroscopy," Appl. Opt. 35, 4086-4095 (1996)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. D. Schwab, R. L. McCreery, “Versatile, efficient Raman sampling with fiber optics,” Anal. Chem. 56, 2199–2204 (1984). [CrossRef]
  2. S. D. Schwab, R. L. McCreery, F. T. Gamble, “Normal and resonance Raman spectroelectrochemistry with fiber optic light collection,” Anal. Chem. 58, 2486–2492 (1986). [CrossRef]
  3. P. Plaza, N. Q. Dao, M. Jouan, H. Fevrier, H. Saisse, “Simulation et optimisation des capteurs a` fibres optiques adjacentes,” Appl. Opt. 25, 3448–3454 (1986). [CrossRef] [PubMed]
  4. D. Heiman, X. L. Zheng, S. Sprunt, B. B. Goldberg, E. D. Isaacs, “Fiber-optics for spectroscopy,” in Raman Scattering, Luminescence and Spectroscopic Instrumentation in Technology, F. Adar, J. E. Griffiths, J. M. Lerner, eds., Proc. SPIE1055, 96–103 (1989).
  5. M. L. Myrick, S. M. Angel, “Elimination of background in fiber-optic Raman measurements,” Appl. Spectrosc. 44, 565–570 (1990). [CrossRef]
  6. J. M. Bello, V. A. Narayanan, D. L. Stokes, T. Vo-Dinh, “Fiber-optic remote sensor for in situ surface-enhanced Raman scattering analysis,” Anal. Chem. 62, 2437–2441 (1990). [CrossRef]
  7. M. L. Myrick, S. M. Angel, R. Desiderio, “Comparison of some fiber optic configurations for measurement of luminescence and Raman scattering,” Appl. Opt. 29, 1333–1344 (1990). [CrossRef] [PubMed]
  8. S. M. Angel, M. L. Myrick, “Wavelength selection for fiber optic Raman spectroscopy. Part 1,” Appl. Opt. 9, 1350–1352 (1990). [CrossRef]
  9. S. W. Kercel, M. J. Roberts, A. A. Garrison, “Recent developments in the development of a fiber-optic based instrument for on-line Raman analysis,” in Raman and Luminescence Spectroscopies in Technology II, F. Adar, J. E. Griffith, eds., Proc. SPIE1336, 144–151 (1990).
  10. M. Jiaying, L. Zhong, “A low stray light Raman microprobe using optical fibers and GRIN lenses,” Appl. Spectrosc. 45, 1302–1304 (1991). [CrossRef]
  11. J. Ma, Y. Li, “Optical-fiber Raman probe with low background interference by spatial optimization,” Appl. Spectrosc. 48, 1529–1531 (1994). [CrossRef]
  12. D. R. Lombardi, C. K. Mann, T. J. Vickers, “Determination of water in slurries by fiber-optic Raman spectroscopy,” Appl. Spectrosc. 49, 220–223 (1995). [CrossRef]
  13. P. Marteau, N. Zanier-Szydlowski, A. Aoufi, G. Hotier, F. Cansell, “Remote Raman spectroscopy for process control,” Fib. Spectrosc. 9, 101–109 (1995). [CrossRef]
  14. Z. Y. Zhu, M. C. Yappert, “Determination of effective depth and equivalent pathlength for a single-fiber fluorometric sensor,” Appl. Spectrosc. 46, 912–918 (1992). [CrossRef]
  15. Z. Y. Zhu, M. C. Yappert, “Determination of effective depth for double-fiber fluorometric sensors,” Appl. Spectrosc. 46, 919–924 (1992). [CrossRef]
  16. S. W. Allison, G. T. Gillies, D. W. Magnusen, T. S. Pagano, “Pulsed laser damage to optical fibers,” Appl. Opt. 24, 3140–3144 (1985). [CrossRef] [PubMed]
  17. S. W. Allison, M. R. Cates, G. T. Gillies, B. W. Noel, “Fiber optic pulsed laser delivery for remote measurements,” Opt. Eng. 26, 538–546 (1987).
  18. L. S. Greek, H. G. Schulze, M. W. Blades, A. V. Bree, B. B. Gorzalka, R. F. B. Turner, “SNR enhancement and deconvolution of Raman spectra using a two-point entropy regularization method,” Appl. Spectrosc. 49, 425–431 (1995). [CrossRef]
  19. A. Yariv, Quantum Electronics (Wiley, New York, 1992), pp. 75–103.
  20. H. J. Berstein, “Resonance Raman spectra,” in Advances in Raman Spectroscopy, J. P. Mathieu, ed. (Heyden, London, 1973), Chap. 37, pp. 305–316.
  21. P. A. Fodor, T. G. Spiro, “Ultraviolet resonance Raman spectroscopy of DNA with 200–266-nm excitation,” J. Am. Chem. Soc. 108, 3198–3205 (1986). [CrossRef]
  22. P. A. Fodor, R. P. Rava, T. R. Hays, T. G. Spiro, “Ultraviolet resonance Raman spectroscopy of the nucleotides with 266-, 240-, 218-, and 200-nm pulsed laser excitation,” J. Am. Chem. Soc. 107, 1520–1529 (1985). [CrossRef]
  23. C. R. Johnson, M. Ludwig, S. O’Donnell, s. A. Asher, “UV resonance Raman spectroscopy of the aromatic amino acids and myoglobin,” J. Am. Chem. Soc. 106, 5008–5010 (1984). [CrossRef]
  24. S. A. Asher, M. Ludwig, C. R. Johnson, “UV resonance Raman excitation profiles of the aromatic amino acids,” J. Am. Chem. Soc. 108, 3186–3197 (1986). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited