OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 35, Iss. 21 — Jul. 20, 1996
  • pp: 4142–4146

Wigner distribution function in nonlinear optics

D. Dragoman  »View Author Affiliations

Applied Optics, Vol. 35, Issue 21, pp. 4142-4146 (1996)

View Full Text Article

Enhanced HTML    Acrobat PDF (181 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Transformation laws for the Wigner distribution function, the radiant intensity, the radiant emittance, and the first- and second-order moments of the Wigner distribution function through an inhomogeneous, Kerr-type medium have been derived as well as for the beam quality factor and the kurtosis parameter. It is shown that the inhomogeneous Kerr-type medium can be approximated from the Wigner-distribution-function transformation-law point of view with a symplectic ABCD matrix with elements depending on the field distribution.

© 1996 Optical Society of America

Original Manuscript: October 12, 1995
Revised Manuscript: February 8, 1996
Published: July 20, 1996

D. Dragoman, "Wigner distribution function in nonlinear optics," Appl. Opt. 35, 4142-4146 (1996)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Wigner, “On the quantum correction for thermodynamic equilibrium,” Phys. Rev. 40, 749–759 (1932). [CrossRef]
  2. M. J. Bastiaans, “Wigner distribution function and its applications to first-order optics,” J. Opt. Soc. Am. 69, 1710–1716 (1979). [CrossRef]
  3. M. J. Bastiaans, “Applications of the Wigner distribution function to partially coherent light,” J. Opt. Soc. Am. A 3, 1227–1237 (1986). [CrossRef]
  4. D. Onciul, “Invariance properties of general astigmatic beams through first-order optical systems,” J. Opt. Soc. Am. A 10, 295–298 (1993). [CrossRef]
  5. D. Dragoman, “Higher-order moments of the Wigner distribution function in first-order optical systems,” J. Opt. Soc. Am. A 11, 2643–2646 (1994). [CrossRef]
  6. J. Serna, R. Martinez-Herrero, P. M. Mejias, “Parametric characterization of general partially coherent beams propagating through ABCD optical systems,” J. Opt. Soc. Am. A 8, 1094–1098 (1991). [CrossRef]
  7. R. Martinez-Herrero, G. Piquero, P. M. Mejias, “On the propagation of the kurtosis parameter of general beams,” Opt. Commun. 115, 225–232 (1995). [CrossRef]
  8. N. Marcuvitz, “Quasiparticle view of wave propagation,” Proc. IEEE 68, 1380–1395 (1980). [CrossRef]
  9. V. Magni, G. Cerullo, S. De Silvestri, “ABCD matrix analysis of propagation of Gaussian beams through Kerr media,” Opt. Commun. 96, 348–355 (1993). [CrossRef]
  10. R. Martinez-Herrero, P. M. Mejias, “Beam characterization through active media,” Opt. Commun. 85, 162–166 (1991). [CrossRef]
  11. M. A. Porras, J. Alda, E. Bernabeu, “Nonlinear propagation and transformation of arbitrary laser beams by means of the generalized ABCD formalism,” Appl. Opt. 32, 5885–5892 (1993). [CrossRef] [PubMed]
  12. C. Pare, P. A. Belanger, “Beam propagation in a linear or nonlinear lens-like medium using ABCD ray matrices: the method of moments,” Opt. Quantum Electron. 24, 1051–1070 (1992). [CrossRef]
  13. Y. S. Kim, M. E. Noz, Phase Space Picture of Quantum Mechanics (World Scientific, Singapore, 1991), Chap. 3.
  14. M. J. Bastiaans, “Transport equation for the Wigner distribution function,” Opt. Acta 26, 1265–1272 (1979). [CrossRef]
  15. A. Ankiewicz, C. Pask, “Geometric optics approach to light acceptance and propagation in graded index fibers,” Opt. Quantum Electron. 9, 87–109 (1977). [CrossRef]
  16. L. D. Faddeev, L. A. Takhtajan, Hamiltonian Methods in the Theory of Solitons (Springer-Verlag, Berlin, 1987).
  17. V. Guillemin, S. Sternberg, Symplectic Techniques in Physics (Cambridge U. Press, Cambridge, 1984).
  18. D. Dragoman, “Wigner distribution function for Gaussian–Schell beams in complex matrix optical systems,” Appl. Opt. 34, 3352–3357 (1995). [CrossRef] [PubMed]
  19. A. Yariv, Optical Electronics (CBS College Publications, New York, 1985), Chap. 2.
  20. K. H. Brenner, A. W. Lohmann, “Wigner distribution function display of complex 1 D signals,” Opt. Commun. 42, 310–314 (1982). [CrossRef]
  21. H. O. Bartelt, K. H. Brenner, A. W. Lohmann, “The Wigner distribution function and its optical production,” Opt. Commun. 32, 32–38 (1980). [CrossRef]
  22. H. Weber, “Wave optical analysis of the phase space analyzer,” J. Mod. Opt. 39, 543–559 (1992).
  23. N. Hodgson, T. Haase, R. Kostka, H. Weber, “Determination of laser beam parameters with the phase space analyzer,” Opt. Commun. 24, 927–949 (1992).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited