OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 35, Iss. 22 — Aug. 1, 1996
  • pp: 4392–4403

Realization of a scale of absolute spectral response using the National Institute of Standards and Technology high-accuracy cryogenic radiometer

T. R. Gentile, J. M. Houston, and C. L. Cromer  »View Author Affiliations


Applied Optics, Vol. 35, Issue 22, pp. 4392-4403 (1996)
http://dx.doi.org/10.1364/AO.35.004392


View Full Text Article

Enhanced HTML    Acrobat PDF (473 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Using the National Institute of Standards and Technology high-accuracy cryogenic radiometer (HACR), we have realized a scale of absolute spectral response between 406 and 920 nm. The HACR, an electrical-substitution radiometer operating at cryogenic temperatures, achieves a combined relative standard uncertainty of 0.021%. Silicon photodiode light-trapping detectors were calibrated against the HACR with a typical relative standard uncertainty of 0.03% at nine laser wavelengths between 406 and 920 nm. Modeling of the quantum efficiency of these detectors yields their responsivity throughout this range with comparable accuracy.

© 1996 Optical Society of America

History
Original Manuscript: August 14, 1995
Revised Manuscript: January 25, 1996
Published: August 1, 1996

Citation
T. R. Gentile, J. M. Houston, and C. L. Cromer, "Realization of a scale of absolute spectral response using the National Institute of Standards and Technology high-accuracy cryogenic radiometer," Appl. Opt. 35, 4392-4403 (1996)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-35-22-4392


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. M. Houston, C. L. Cromer, J. E. Hardis, T. C. Larason, “Comparison of the NIST high accuracy cryogenic radiometer and the NIST scale of detector spectral response,” Metrologia 30, 285–290 (1993). [CrossRef]
  2. T. R. Gentile, J. M. Houston, J. E. Hardis, C. L. Cromer, A. C. Parr, “The National Institute of Standards and Technology high-accuracy cryogenic radiometer,” Appl. Opt. 35, 1056–1068 (1996). [CrossRef] [PubMed]
  3. C. L. Cromer, “A new spectral response calibration method using a silicon photodiode trap detector,” presented at the 1991 Measurement Science Conference, Anaheim, Calif., 31 January–1 February 1991.
  4. N. P. Fox, “Trap detectors and their properties,” Metrologia 28, 197–202 (1991). [CrossRef]
  5. M. Stock, J. Fischer, R. Friedrich, H. J. Jung, R. Thornagel, G. Ulm, B. Wende, “Present state of the comparison between radiometric scales based on three primary standards,” Metrologia 30, 439–449 (1993). [CrossRef]
  6. M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1980), pp. 632–633.
  7. J. E. Martin, N. P. Fox, P. J. Key, “A cryogenic radiometer for absolute radiometric measurements,” Metrologia 21, 147–155 (1985). [CrossRef]
  8. F. Lei, J. Fischer, “Characterization of photodiodes in the UV and visible spectral region based on cryogenic radiometry,” Metrologia, 30, 297–303 (1993). [CrossRef]
  9. R. Kohler, R. Goebel, R. Pello, “Report on the international comparison of spectral responsivity of silicon detectors,” Rapport BIPM-94/9, doc. CCPR/94-2 (Bureau International des Poids et Mesures, Pavillon de Breteuil, 93212 Sevres, Cedex, France).
  10. Model 1337-1010BQ, Hamamatsu Corporation, 360 Foothill Rd., P.O. Box 6910, Bridgewater, N.J. 08807-0910. Certain trade names and company products are mentioned in the text or identified in an illustration to specify adequately the experimental procedure and equipment used. In no case does such identification imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the products are necessarily the best available for the purpose.
  11. R. Kohler, R. Goebel, R. Pello, J. Bonhoure, “Effects of humidity and cleaning on the sensitivity of Si photodiodes,” Metrologia 28, 211–215 (1991). [CrossRef]
  12. B. N. Taylor, C. E. Kuyatt, “Guidelines for evaluating and expressing the uncertainty of NIST measurement results,” NIST Tech. Note 1297 (National Institute of Standards and Technology, Gaithersburg, Md., 1994).
  13. J. Geist, E. F. Zalewski, A. R. Schaefer, “Spectral response self-calibration and interpolation of silicon photodiodes,” Appl. Opt. 19, 3795–3799 (1980). [CrossRef] [PubMed]
  14. I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am. 55, 1205–1209 (1965). [CrossRef]
  15. P. R. Bevington, Data Reduction and Error Analysis for the Physical Sciences (McGraw-Hill, New York, 1969), Chaps. 10 and 11.
  16. J. Geist, D. Chandler-Horowitz, A. M. Robinson, C. R. James, “Numerical modeling of silicon photodiodes for high accuracy applications, Parts I, II, and III,” J. Res. Natl. Inst. Stand. Technol. 96, 463–492 (1991). [CrossRef]
  17. J. Geist, H. Baltes, “High accuracy modeling of photodiode quantum efficiency,” Appl. Opt. 28, 3929–3939 (1989). [CrossRef] [PubMed]
  18. G. E. Jellison, “Optical functions of silicon determined by two-channel polarization modulation ellipsometry,” Opt. Mater. 1, 41–47 (1992). [CrossRef]
  19. J. Geist, A. Migdall, H. P. Baltes, “Analytic representation of the silicon absorption coefficient in the indirect transition region,” Appl. Opt. 27, 3777–3779 (1988). [CrossRef] [PubMed]
  20. H. A. Weakliem, D. Redfield, “Temperature dependence of the optical properties of silicon,” J. Appl. Phys. 50, 1491–1493 (1979). [CrossRef]
  21. J. Geist, “Quantum efficiency of the p-n junction as an absolute radiometric scale,” Appl. Opt. 18, 760–762 (1979). [CrossRef] [PubMed]
  22. H. R. Phillip, “Influence of oxide layers on the determination of the optical properties of silicon,” J. Appl. Phys. 43, 2835–2839 (1972). [CrossRef]
  23. W. C. Dash, R. Newman, “Intrinsic optical absorption in single-crystal germanium and silicon at 77 K and 300 K,” Phys. Rev. 99, 1151–1155 (1955). [CrossRef]
  24. A. A. Vol’fson, V. K. Subashiev, “Fundamental absorption edge of silicon heavily doped with donor or acceptor impurities,” Sov. Phys. Semicond. 1, 327–332 (1967).
  25. D. E. Edwards, “Silicon (Si),” in Handbook of Optical Constants of Solids (Academic, New York, 1985), pp. 547–569.
  26. D. E. Aspnes, J. B. Theeten, “Spectroscopic analysis of the interface between Si and its thermally grown oxide,” J. Electrochem. Soc. 127, 1359–1365 (1980). [CrossRef]
  27. R. Hulthen, “Optical constants of epitaxial silicon in the region 1–3.3 eV,” Phys. Scr. 12, 342–344 (1975). [CrossRef]
  28. R. Braunstein, A. R. Moore, F. Herman, “Intrinsic optical absorption in germanium-silicon alloys,” Phys. Rev. 109, 695–710 (1958). [CrossRef]
  29. J. Geist, A. R. Schaefer, J. F. Song, Y. H. Wang, E. F. Zalewski, “An accurate value for the absorption coefficient of silicon at 633 nm,” J. Res. Natl. Inst. Stand. Technol. 95, 549–558 (1990). [CrossRef]
  30. G. E. Jellison, F. A. Modine, “Optical constants for silicon at 300 and 10 K determined from 1.64 to 4.73 eV by ellipsometry,” J. Appl. Phys. 53, 3745–3753 (1982). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited