OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 35, Iss. 22 — Aug. 1, 1996
  • pp: 4413–4419

Fourier-transform design and electron cyclotron resonance plasma-enhanced deposition of lossy graded-index optical coatings

Pavel V. Bulkin, Pieter L. Swart, and Beatrys M. Lacquet  »View Author Affiliations


Applied Optics, Vol. 35, Issue 22, pp. 4413-4419 (1996)
http://dx.doi.org/10.1364/AO.35.004413


View Full Text Article

Enhanced HTML    Acrobat PDF (323 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A Fourier-transform synthesis technique is applied to the design of inhomogeneous refractive-index optical thin films with dispersion of refractive index and absorption taken into account. Using measured properties of SiO x N y , we have designed a broadband reflector and two three-line filters with high reflectance. One of the three-line filters was manufactured by electron cyclotron resonance plasma-enhanced chemical vapor deposition from a mixture of SiH4, N2, O2, and Ar. Good agreement between design and measured performance proves the feasibility of applying the Fourier-transform technique to the design of reflection filters even in the case of highly dispersive, absorbing material, if its optical properties are well characterized.

© 1996 Optical Society of America

History
Original Manuscript: September 25, 1995
Revised Manuscript: January 16, 1996
Published: August 1, 1996

Citation
Pavel V. Bulkin, Pieter L. Swart, and Beatrys M. Lacquet, "Fourier-transform design and electron cyclotron resonance plasma-enhanced deposition of lossy graded-index optical coatings," Appl. Opt. 35, 4413-4419 (1996)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-35-22-4413


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. A. Macleod, “New techniques revolutionize thin-film optical coatings,” Laser Focus World 28(11), 111–120 (1992).
  2. W. H. Southwell, “Use of gradient index for spectral filters,” in Solid State Optical Control Devices, P. A. Yeh, ed., Proc. SPIE464, 110–114 (1984).
  3. J. A. Dobrowolski, D. Lowe, “Optical thin film synthesis program based on the use of Fourier transforms,” Appl. Opt. 17, 3039–3050 (1978). [CrossRef] [PubMed]
  4. P. G. Verly, J. A. Dobrowolski, W. J. Wild, R. L. Burton, “Synthesis of high rejection filters with the Fourier transform method,” Appl. Opt. 28, 2864–2875 (1989). [CrossRef] [PubMed]
  5. P. G. Verly, J. A. Dobrowolski, “Iterative correction process for optical thin film synthesis with the Fourier transform method,” Appl. Opt. 29, 3672–3684 (1990). [CrossRef] [PubMed]
  6. B. G. Bovard, “Derivation of a matrix describing a rugate dielectric thin film,” Appl. Opt. 27, 1998–2005 (1988). [CrossRef] [PubMed]
  7. B. G. Bovard, “Rugate filter design: the modified Fourier transform technique,” Appl. Opt. 29, 24–30 (1990). [CrossRef] [PubMed]
  8. B. G. Bovard, “Rugate filter theory: an overview,” Appl. Opt. 32, 5427–5442 (1993). [CrossRef] [PubMed]
  9. H. Fabricius, “Gradient-index filters: designing filters with steep skirts, high reflection, and quintic matching layers,” Appl. Opt. 31, 5191–5196 (1992). [CrossRef] [PubMed]
  10. H. Fabricius, “Gradient-index filters: conversion into a two-index solution by taking into account dispersion,” Appl. Opt. 31, 5216–5220 (1992). [CrossRef] [PubMed]
  11. W. H. Southwell, “Spectral response calculations of rugate filters using coupled-wave theory,” J. Opt. Soc. Am. A 5, 1558–1564 (1988). [CrossRef]
  12. W. H. Southwell, “Using apodization functions to reduce sidelobes in rugate filters,” Appl. Opt. 28, 5091–5094 (1989). [CrossRef] [PubMed]
  13. W. H. Southwell, R. L. Hall, “Rugate filter sidelobe suppression using quintic and rugated quintic matching layers,” Appl. Opt. 28, 2949–2951 (1989). [CrossRef] [PubMed]
  14. W. H. Southwell, R. L. Hall, W. J. Gunning, “Using wavelets to design gradient-index interference coatings,” in Inhomogeneous and Quasi-inhomogeneous Optical Coatings, J. A. Dobrowolski, P. G. Verly, eds., Proc. SPIE2046, 46–59 (1993).
  15. R. Overend, D. R. Gibson, R. Marshall, K. Lewis, “Rugate filter fabrication using neutral cluster beam deposition,” Vacuum 43, 51–54 (1992). [CrossRef]
  16. W. J. Gunning, R. L. Hall, F. J. Woodberry, W. H. Southwell, N. S. Gluck, “Codeposition of continuous composition rugate filters,” Appl. Opt. 28, 2945–2948 (1989). [CrossRef] [PubMed]
  17. H. Sankur, W. Southwell, R. Hall, W. J. Gunning, “Rugate filter deposition by the OMVPE technique,” in Optical Interference Coatings, Vol. 15 of OSA 1992 Technical Digest Series (Optical Society of America, Washington, D.C., 1992), pp. 125–127.
  18. C. S. Bartholomew, H. T. Betz, J. L. Grieser, R. A. Spence, N. R. Murarka, “Rugate filters by laser flash evaporation of SixNy on room temperature polycarbonate,” in Modeling of Optical Thin Films, M. R. Jacobson, ed., Proc. Soc. SPIE821, 198–204 (1987).
  19. J. Allen, B. D. Herrington, S. Jansen, J. C. Blomfield, “Graded rugate filters for head-up displays,” in Optical Interference Coatings, Vol. 15 of OSA 1992 Technical Digest Series (Optical Society of America, Washington, D.C., 1992), pp. 134–136.
  20. E. P. Donovan, D. Van Vechten, A. D. F. Kahn, C. A. Carosella, G. K. Hubler, “Near infrared rugate filter fabrication by ion beam assisted deposition of Si(1−x)Nx films,” Appl. Opt. 28, 2940–2944 (1989). [CrossRef] [PubMed]
  21. S. Lim, J. H. Ryu, J. F. Wager, T. K. Plant, “Rugate filters grown by plasma-enhanced chemical vapor deposition,” Thin Solid Films 245, 141–145 (1994). [CrossRef]
  22. M. L. Elder, K. S. Jancaitis, D. Milam, J. H. Campbell, “Optical characterization of damage resistant ‘kilolayer’ rugate filters,” in Laser Induced Damage in Optical Materials: 1989, Report UCRL-JC-105036. (Lawrence Livermore National Laboratory, Livermore, Calif., 1989).
  23. J. Allen, P. G. Girow, B. Herrington, P. Gee, “Rugate filters for image projection in head-mounted displays,” in Optical Interference Coatings, F. Abeles, A. Duparre, G. Emiliani, J.-P. Gailiard, K. H. Guenther, R. P. Nutterfield, E. P. Pelletier, H. Rudigier, A. MacLeod, C. Boccara, eds., Proc. SPIE2253, 470–475 (1994).
  24. B. G. Bovard, “Ion-assisted processing of optical coatings,” Thin Solid Films 206, 224–229 (1991). [CrossRef]
  25. A. G. Greenham, B. A. Nichols, R. M. Wood, N. Nourshargh, K. L. Lewis, “Optical interference filters with continuous refractive index modulations by microwave plasma-assisted chemical vapor deposition,” Opt. Eng. 32, 1018–1023 (1993). [CrossRef]
  26. P. V. Bulkin, P. L. Swart, B. M. Lacquet, F. J. Burger, “Electron cyclotron resonance plasma deposition for multilayer structures of silicon nitride on silicon,” S. Afr. J. Phys. 16, 33–36 (1993).
  27. P. V. Bulkin, P. L. Swart, B. M. Lacquet, “Electron cyclotron resonance plasma deposition of SiNx for optical applications,” Thin Solid Films 241, 247–250 (1994). [CrossRef]
  28. P. V. Bulkin, P. L. Swart, B. M. Lacquet, “Properties and applications of electron cyclotron plasma deposited SiOxNy films with graded refractive index profiles,” J. Non-Cryst. Solids 187, 484–488 (1995). [CrossRef]
  29. P. V. Bulkin, P. L. Swart, B. M. Lacquet, “Optical properties of SiNx deposited by electron cyclotron plasma-enhanced deposition,” Opt. Eng. 33, 2894–2897 (1994). [CrossRef]
  30. P. V. Bulkin, P. L. Swart, B. M. Lacquet, “ECR plasma CVD for rugate filters manufacturing,” in Optical Interference Coatings, F. Abeles, A. Duparre, G. Emiliani, J.-P. Gailiard, K. H. Guenther, R. P. Nutterfield, E. P. Pelletier, H. Rudigier, A. MacLeod, C. Boccara, eds., Proc. SPIE2253, 462–469 (1994).
  31. A. A. Chtcherbakov, P. L. Swart, S. J. Spammer, P. V. Bulkin, “Long dual-cavity fiber optic Fabry-Perot strain sensor with rugate mirrors,” Opt. Eng. 35, 1059–1063 (1996). [CrossRef]
  32. L. Li, J. A. Dobrowolski, “Computation speeds of different optical thin-film synthesis methods,” Appl. Opt. 31, 3790–3799 (1992). [CrossRef] [PubMed]
  33. H. A. Macleod, Thin Film Optical Filters (Hilger, Bristol, U.K., 1986). [CrossRef]
  34. E. Delano, “Fourier synthesis of multilayer filters,” J. Opt. Soc. Am. 57, 1529–1533 (1967). [CrossRef]
  35. L. Sossi, P. Kard, “On the theory of the reflection and transmission of light by a thin inhomogeneous dielectric film,” Eesti NSV Tead. Akad. Toim. Fuus. Mat. 17, 41–48 (1968).
  36. L. Sossi, “A method for the synthesis of multilayer dielectric interference coatings,” Eesti NSV Tead. Akad. Toim. Fuus. Mat. 23, 223–237 (1974).
  37. L. Sossi, “On the theory of synthesis of multilayer dielectric light filters,” Eesti NSV Tead. Akad. Toim. Fuus. Mat. 25, 171–176 (1976).
  38. W. J. Wild, “Analytic improvement of Sossi’s Q function,” Appl. Opt. 28, 3272–3273 (1989). [CrossRef]
  39. P. G. Verly, “Fourier transform technique with frequency filtering for antireflection coatings design,” in Optical Interference Coatings, F. Abeles, A. Duparre, G. Emiliani, J.-P. Gailiard, K. H. Guenther, R. P. Nutterfield, E. P. Pelletier, H. Rudigier, A. MacLeod, C. Boccara, eds., Proc. SPIE2253, 161–167 (1994).
  40. P. V. Bulkin, P. L. Swart, B. M. Lacquet, “Effect of process parameters on the properties of electron cyclotron resonance plasma deposited silicon-oxynitride,” J. Non-Cryst. Solids 187, 403–408 (1995). [CrossRef]
  41. R. Swanepoel, “Determination of the thickness and optical constants of amorphous silicon,” J. Phys. E 16, 1214–1222 (1983). [CrossRef]
  42. S. Yu. Shapoval, P. V. Bulkin, A. A. Chumakov, S. A. Khudobin, I. A. Maximov, G. M. Mikhailov, “Compact ECR source of ions and radicals for semiconductor surface treatment,” Vacuum 43, 195–197 (1992). [CrossRef]
  43. L. Bourget, B. Lane, J. Ding, “Large area ECR processing,” in Symposium A, Amorphous Insulating Thin Films II, at the European Materials Research Society Spring Meeting, Strasbourg, 24–27 May 1994, paper A-VII-XII/P51 (abstract only).
  44. M. J. Hernandez, J. Garrido, J. Piqueras, “Silicon dioxide deposition by electron cyclotron resonance plasma: kinetic and ellipsometric studies,” J. Vac. Sci. Technol. B 12, 581–584 (1994). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited