OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 35, Iss. 22 — Aug. 1, 1996
  • pp: 4436–4447

Experimental measurement of a time-varying optical path difference by the small-aperture beam technique

Ronald J. Hugo and Eric J. Jumper  »View Author Affiliations


Applied Optics, Vol. 35, Issue 22, pp. 4436-4447 (1996)
http://dx.doi.org/10.1364/AO.35.004436


View Full Text Article

Enhanced HTML    Acrobat PDF (517 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We discuss the use of time series of the jitter angle of multiple, small-aperture probe beams (the small-aperture beam technique, or SABT) as they emerge from a turbulent, optically active flow-field to quantify the time-varying optical path difference (OPD). The flow field studied is that for the transitionally turbulent region of a two-dimensional heated jet. Techniques to construct a complete time series of instantaneous realizations of the OPD are first applied to a numerically generated flow field and then to an experimental flow field. The SABT sensor’s measurement accuracy is assessed, and its application to flow fields that differ from the numerical heated jet is discussed.

© 1996 Optical Society of America

History
Original Manuscript: September 14, 1995
Published: August 1, 1996

Citation
Ronald J. Hugo and Eric J. Jumper, "Experimental measurement of a time-varying optical path difference by the small-aperture beam technique," Appl. Opt. 35, 4436-4447 (1996)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-35-22-4436


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. J. Smith, Modern Optical Engineering: The Design of Optical Systems (McGraw-Hill, New York, 1966), Chap. 3, pp. 49–71.
  2. G. W. Sutton, “Effects of turbulent fluctuations in an optically active fluid medium,” AIAA J. 7, 1737–1743 (1969). [CrossRef]
  3. V. I. Tatarski, Wave Propagation in a Turbulent Medium (Dover, New York, 1961), Chap. 6.
  4. R. K. Tyson, Principles of Adaptive Optics (Academic, San Diego, Calif., 1991), Chap. 8, pp. 257–260.
  5. J. W. Hardy, “Adaptive optics,” Sci. Am. 270, 60–65 (1994). [CrossRef]
  6. R. K. Tyson, “The status of astronomical adaptive optics systems,” O. E. Rep. 121, 11, 13 (1994).
  7. R. Q. Fugate, W. J. Wild, “Untwinkling the stars, part 1,” Sky Telescope 87(5), 20–31 (1994).
  8. R. Q. Fugate, W. J. Wild, “Untwinkling the stars, part 2,” Sky Telescope 87(6), 20–27 (1994).
  9. R. J. Hugo, E. J. Jumper, “Experimental measurement of a time-varying optical path difference using the small-aperture beam technique,” in Optical Diagnostics in Fluid and Thermal Flow, S. S. Cha, J. D. Trolinger, eds. Proc. SPIE2005, 116–128 (1993).
  10. R. J. Hugo, E. J. Jumper, G. Havener, S. A. Stepanek, “Time-resolved, aero-optical measurements of a wavefront aberrated by a compressible shear layer,” AIAA paper 95-1979 (American Institute of Aeronautics and Astronautics, New York, 1995).
  11. E. J. Jumper, R. J. Hugo, “Quantification of aero-optical phase distortion using the small-aperture beam technique,” AIAA J. 33, 2151–2157 (1995). [CrossRef]
  12. D. Malacara, Optical Shop Testing (Wiley, New York, 1978), Chap. 10, pp. 323–345.
  13. J. D. Trolinger, “Aero-optical characterization of aircraft optical turrets by holography, interferometry, and shadowgraph,” Vol. 80 of Progress in Astronautics and Aeronautics: Aero-Optical Phenomena, K. Gilbert, L. J. Otten, eds. (American Institute of Aeronautics and Astronautics, New York, 1982), pp. 200–217.
  14. D. Kelsall, “Optical ‘seeing’ through the atmosphere by an interferometric technique,” J. Opt. Soc. Am. 63, 1472–1484 (1973). [CrossRef]
  15. D. Kelsall, “Rapid interferometric technique for MTF measurements in the visible or infrared region,” Appl. Opt. 12, 1398–1399 (1973). [CrossRef] [PubMed]
  16. D. J. Wolters, “Aerodynamic effects on airborne optical systems,” MDC A2582 (McDonnell Douglas Corporation, St. Louis, 1973).
  17. W. J. Steinmetz, “Second moments of optical degradation due to a thin turbulent layer,” Vol. 80 of Progress in Astronautics and Aeronautics: Aero-Optical Phenomena, K. Gilbert, L. J. Otten, eds. (American Institute of Aeronautics and Astronautics, New York, 1982), pp. 78–100.
  18. W. C. Rose, D. A. Johnson, L. J. Otten, “Summary of ALL cycle II.5 aerodynamic shear- and boundary-layer measurements,” Vol. 80 of Progress in Astronautics and Aeronautics: Aero-Optical Phenomena, K. Gilbert, L. J. Otten, eds. (American Institute of Aeronautics and Astronautics, New York, 1982), pp. 294–305.
  19. K. G. Gilbert, “KC-135 aero-optical turbulent boundary-layer/shear-layer experiments,” Vol. 80 of Progress in Astronautics and Aeronautics: Aero-Optical Phenomena, K. Gilbert, L. J. Otten, eds. (American Institute of Aeronautics and Astronautics, New York, 1982), pp. 306–324.
  20. M. Malley, G. W. Sutton, N. Kincheloe, “Beam-jitter measurements of turbulent aero-optical path differences,” Appl. Opt. 31, 4440–4443 (1992). [CrossRef] [PubMed]
  21. D. R. Neal, T. J. O’Hern, J. R. Torczynski, M. E. Warren, R. Shul, T. S. McKechnie, “Wavefront sensors for optical diagnostics in fluid mechanics: application to heated flow, turbulence and droplet evaporation,” in Optical Diagnostics in Fluid and Thermal Flow, S. S. Cha, J. D. Trolinger, eds., Proc. SPIE2005, 194–203 (1993).
  22. L. McMackin, J. Wissler, N. Clark, E. Chen, K. Bishop, R. Pierson, B. Stavely, “Hartmann sensor and dynamic to-mographical analysis of organized structure in flow fields,” AIAA paper 94-2548 (American Institute of Aeronautics and Astronautics, New York, 1994).
  23. B. Masson, L. McMackin, J. Wissler, K. Bishop, “Study of a round jet using a Shack–Hartmann wavefront sensor,” AIAA paper 95-0644 (American Institute of Aeronautics and Astronautics, New York, 1995).
  24. G. Havener, F. Heltsley, “Design aspects and preliminary holographic-PIV measurements for a subsonic free shear layer flow channel,” AIAA paper 94-2550 (American Institute of Aeronautics and Astronautics, New York, 1994).
  25. M. V. Klein, Optics (Wiley, New York, 1970), Chap. 2, pp. 29–31.
  26. G. W. Sutton, ANSER, Suite 800, 1215 Jefferson Davis Highway, Arlington, Va. 22202 (personal communication, April1989).
  27. J. O. Hinze, Turbulence, 2nd ed. (McGraw-Hill, New York, 1975), Chap. 5, p. 420.
  28. J. B. Wissler, A. Roshko, “Transmission of thin light beams through turbulent mixing layers,” AIAA paper 92-0658 (American Institute of Aeronautics and Astronautics, New York, 1992).
  29. E. J. Jumper, R. J. Hugo, J. M. Cicchiello, “Turbulent-fluid-induced optical wavefront dynamics: near- and far-field implications,” AIAA paper 94-2547 (American Institute of Aeronautics and Astronautics, New York, 1994).
  30. R. J. Hugo, “Quantifying the spatio-temporal effects of optically-active turbulent flowfields on a coherent optical wave,” Ph.D. dissertation (University of Notre Dame, Notre Dame, Ind., 1995).
  31. J. S. Bendat, A. G. Piersol, Random Data—Analysis and Measurement Procedures, 2nd ed. (Wiley, New York, 1986), Chap. 12, pp. 425–483.
  32. A. Leonard, “Review: vortex methods for flow simulation,” J. Comput. Phys. 37, 289–335 (1980). [CrossRef]
  33. E. Acton, “A modelling of large eddies in an axisymmetric jet,” J. Fluid Mech. 98, 1–31 (1980). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited