OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 35, Iss. 22 — Aug. 1, 1996
  • pp: 4448–4462

Surface microroughness of optical glasses under deterministic microgrinding

John C. Lambropoulos, Tong Fang, Paul D. Funkenbusch, Stephen D. Jacobs, Michael J. Cumbo, and Donald Golini  »View Author Affiliations


Applied Optics, Vol. 35, Issue 22, pp. 4448-4462 (1996)
http://dx.doi.org/10.1364/AO.35.004448


View Full Text Article

Enhanced HTML    Acrobat PDF (546 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Deterministic microgrinding of precision optical components with rigid, computer-controlled machining centers and high-speed tool spindles is now possible on a commercial scale. Platforms such as the Opticam systems at the Center for Optics Manufacturing produce convex and concave spherical surfaces with radii from 5 mm to ∞, i.e., planar, and work diameters from 10 to 150 mm. Aspherical surfaces are also being manufactured. The resulting specular surfaces have a typical rms microroughness of 20 nm, 1 μm of subsurface damage, and a figure error of less than 1 wave peak to valley. Surface roughness under deterministic microgrinding conditions (fixed infeed rate) with bound abrasive diamond ring tools with various degrees of bond hardness is correlated to a material length scale, identified as a ductility index, involving the hardness and fracture toughness of glasses. This result is in contrast to loose abrasive grinding (fixed nominal pressure), in which surface microroughness is determined by the elastic stiffness and the hardness of the glass. We summarize measurements of fracture toughness and microhardness by microindentation for crown and flint optical glasses, and fused silica. The microindentation fracture toughness in nondensifying optical glasses is in good agreement with bulk fracture toughness measurement methods.

© 1996 Optical Society of America

History
Original Manuscript: August 14, 1995
Revised Manuscript: January 23, 1996
Published: August 1, 1996

Citation
John C. Lambropoulos, Tong Fang, Paul D. Funkenbusch, Stephen D. Jacobs, Michael J. Cumbo, and Donald Golini, "Surface microroughness of optical glasses under deterministic microgrinding," Appl. Opt. 35, 4448-4462 (1996)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-35-22-4448


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. H. Pollicove, D. T. Moore, “Optics manufacturing technology moves toward automation,” Laser Focus World 27 (3), 145–148 (1991).
  2. H. H. Pollicove, D. T. Moore, “Center for Optics Manufacturing overview,” in Optical Fabrication and Testing, Vol. 24 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), pp. 44–47.
  3. D. Golini, W. Czajkowski, “Microgrinding makes ultrasmooth optics fast,” Laser Focus World 28 (7), 146–150 (1992).
  4. D. Golini, A. Lindquist, M. Atwood, C. Ferreira, “Influence of process parameters in deterministic microgrinding,” in Optical Fabrication and Testing, Vol. 13 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), pp. 28–31.
  5. H. H. Pollicove, D. Golini, J. Ruckman, “Computer aided optics manufacturing,” Opt. Photon. News15–19 (June1994). [CrossRef]
  6. J. Liedes, “Opticam SM update,” in Current Developments in Optical Design and Optical Engineering II, R. E. Fischer, W. J. Smith, eds., Proc. SPIE1752, 153–157 (1992).
  7. J. C. Lambropoulos, P. D. Funkenbusch, D. J. Quesnel, S. M. Gracewski, R. F. Gans, “Mechanics and materials issues in optics manufacturing,” in Proceedings of the Ninth Annual Meeting of the American Society for Precision Engineering, (American Society for Precision Engineering, Raleigh, N.C., 1994), pp. 370–373.
  8. J. C. Lambropoulos, “Mechanical, thermal, diffusional, and geometrical length scales in polishing and grinding,” in Proceedings of the Ninth Annual Meeting of the American Society for Precision Engineering (American Society for Precision Engineering, Raleigh, N.C., 1994), pp. 97–100.
  9. G. S. Khodakov, Y. A. Glukhov, “Fine grinding of optical components with a diamond tool,” Sov. J. Opt. Technol. 48, 428–435 (1981).
  10. P. D. Funkenbusch, S. M. Gracewski, “Tool property characterization,” presented at the Optifab 1994 Conference, Rochester, N.Y., 17–18 October 1994.
  11. P. D. Funkenbusch, Y. Y. Zhou, T. Takahashi, D. J. Quesnel, J. C. Lambropoulos, “Characterization of fine abrasive particles for optical fabrication,” in International Conference on Optical Fabrication and Testing, T. Kasai, ed., Proc. SPIE2576, 46–52 (1995).
  12. A. G. Evans, D. B. Marshall, “Wear mechanisms in ceramics,” in Fundamentals of Friction and Wear of Materials, D. A. Rigney, ed. (American Society for Metals, Metals Park, Ohio, 1981), pp. 441–452.
  13. T. S. Izumitani, Optical Glass (American Institute of Physics, New York, N.Y., 1986).
  14. S. Yoshida, H. Ito, “The present and future of ductileregime grinding of optical parts,” Bull. Jpn. Soc. Precis. Eng. 24, 239–243 (1990).
  15. T. G. Bifano, T. A. Dow, R. O. Scattergood, “Ductile-regime grinding: a new technology for machining brittle materials,” J. Eng. Ind. 113, 184–189 (1991). [CrossRef]
  16. D. Golini, S. D. Jacobs, “Transition between brittle and ductile mode in loose abrasive grinding,” in Advanced Optical Manufacturing and Testing, L. R. Baker, P. B. Reid, G. M. Sanger, eds., Proc. SPIE1333, 80–91 (1990).
  17. D. Golini, S. D. Jacobs, “Physics of loose abrasive microgrinding,” Appl. Opt. 30, 2761–2777 (1991). [CrossRef] [PubMed]
  18. Y. Namba, M. Abe, “Ultraprecision grinding of optical glasses to produce super-smooth surfaces,” Ann. CIRP 42, 417–420 (1993). [CrossRef]
  19. M. G. Schinker, “Subsurface damage mechanisms at highspeed ductile machining of optical glasses,” Precis. Eng. 13, 208–218 (1991). [CrossRef]
  20. N. J. Brown, B. A. Fuchs, “Brittle to shear grinding mode transition for loose abrasive grinding,” Report UCRL-100043 (Lawrence Livermore National Laboratory, Livermore, Calif, 1988).
  21. N. J. Brown, B. A. Fuchs, “Shear mode grinding,” in 43rd Annual Symposium on Frequency Control (IEEE, New York, 1989), pp. 606–610. [CrossRef]
  22. J. C. Lambropoulos, T. Fang, A. Lindquist, D. Golini, “Mechanics aspects of the Twyman effect under loose abrasive grinding, loose abrasive microgrinding, and deterministic microgrinding conditions,” Ceram. Trans. (to be published).
  23. O. Podzimek, “Residual stress and deformation energy under ground surfaces of brittle solids,” Ann. CIRP 35, 397–400 (1986). [CrossRef]
  24. O. Podzimek, “Residual stress and deformation energy under ground surfaces of brittle solids,” Tech. Rep. WB-85-16 (Twente University of Technology, Enschede, The Netherlands, 1986).
  25. O. Podzimek, “Deformation energy under optical surfaces,” in High Power Lasers: Sources, Laser-Material Interactions, High Excitations, and Fast Dynamics, E. W. Kreutz, A. Quenzer, D. Schuoecker, eds., Proc. SPIE801, 221–225 (1987).
  26. N. J. Brown, B. A. Fuchs, P. P. Hed, I. F. Stowers, “The response of isotropic brittle materials to abrasive processes,” in 43rd Annual Symposium on Frequency Control (IEEE, New York, 1989), pp. 611–616. [CrossRef]
  27. F. K. Aleinikov, “The effect of certain physical and mechanical properties on the grinding of brittle materials,” Sov. Phys. Tech. Phys. 27, 2529–2538 (1957).
  28. G. S. Khodakov, V. P. Korovkin, V. M. Altshuler, “Physical principles of the fine grinding of optical glass with a diamond tool,” Sov. J. Opt. Technol. 47, 552–560 (1980).
  29. D. F. Edwards, P. P. Hed, “Optical glass fabrication technology. 1: fine grinding mechanism using bound diamond abrasives,” Appl. Opt. 26, 4670–4676 (1987). [CrossRef] [PubMed]
  30. D. F. Edwards, P. P. Hed, “Optical glass fabrication technology. 2: relationship between surface roughness and subsurface damage,” Appl. Opt. 26, 4677–4680 (1987). [CrossRef] [PubMed]
  31. M. Buijs, K. Korpel-Van Houten, “A model for lapping of glass,” J. Mater. Sci.28, 3014–3020 (1993). [CrossRef]
  32. A. L. Ardamatskii, “Principles of diamond tool operation,” Sov. J. Opt. Technol. 47, 613–622 (1980).
  33. H. Li, R. C. Bradt, “The indentation load/size effect and the measurement of the hardness of vitreous silica,” J. Non-Cryst. Solids 146, 197–212 (1992). [CrossRef]
  34. T. S. Izumitani, “Lapping hardness of optical glass,” Hoya Tech. Rep. HGW-O-7E (Hoya Glass Works, Tokyo, Japan, 1971).
  35. R. F. Cook, G. M. Pharr, “Direct observation and analysis of indentation cracking in glasses and ceramics,” J. Am. Ceram. Soc. 73, 787–817 (1990). [CrossRef]
  36. M. Sakai, R. C. Bradt, “Fracture toughness testing of brittle materials,” Int. Mater. Rev. 38, 53–78 (1993). [CrossRef]
  37. A. G. Evans, E. A. Charles, “Fracture toughness determination by indentation,” J. Am. Ceram. Soc. 59, 371–372 (1976). [CrossRef]
  38. A. G. Evans, “Fracture toughness: the role of indentation techniques,” in Fracture Mechanics Applied to Brittle Materials, S. W. Freiman, ed. (American Society for Testing and Materials, Philadelphia, Pa., 1979), pp. 112–135. [CrossRef]
  39. B. R. Lawn, A. G. Evans, D. B. Marshall, “Elastic/plastic indentation damage in ceramics: the median/radial crack system,” J. Am. Ceram. Soc. 63, 574–581 (1980). [CrossRef]
  40. G. R. Anstis, P. Chanticul, B. R. Lawn, D. B. Marshall, “A critical evaluation of indentation techniques for measuring fracture toughness: I. direct crack measurements,” J. Am. Ceram. Soc. 64, 533–543 (1981). [CrossRef]
  41. J. Lankford, “Indentation microfracture in the Palmqvist crack regime: implications for fracture toughness evaluation by the indentation method,” J. Mater. Sci. Lett. 1, 493–495 (1982). [CrossRef]
  42. K. Niihara, R. Morena, D. P. H. Hasselman, “Evaluation of KIc of brittle solids by the indentation method with low crack-to-indent ratios,” J. Mater. Sci. Lett. 1, 13–16 (1982). [CrossRef]
  43. D. K. Shetty, I. G. Wright, P. N. Mincer, A. H. Clauer, “Indentation fracture of WC-Co cermets,” J. Mater. Sci. 20, 1873–1882 (1985). [CrossRef]
  44. I. J. McColm, Ceramic Hardness (Plenum, New York, 1990).
  45. R. L. K. Matsumoto, “Evaluation of fracture toughness determination methods as applied to ceria-stabilized tetragonal zirconia polycrystal,” J. Am. Ceram. Soc. 70, C366–C368 (1987). [CrossRef]
  46. Schott Glass Catalog, (Schott Glass Technologies, Inc., Duryea, Pa., 1992), Pub. 10000.
  47. M. Cumbo, The Institute of Optics, University of Rochester, Rochester, New York 14627 (personal communication), 1992.
  48. M. Cumbo, “Chemo-mechanical interactions in optical polishing,” Ph.D. dissertation (University of Rochester, Rochester, New York, 1993).
  49. I. M. Androsov, S. N. Dub, V. P. Maslov, “Unique features associated with using the indentation method for determining the crack resistance of brittle materials,” Sov. J. Opt. Technol. 56, 691–693 (1989).
  50. S. M. Wiederhorn, H. Johnson, A. M. Diness, A. H. Heuer, “Fracture of glass in vacuum,” J. Amer. Ceram. Soc. 57, 337– 341 (1974). [CrossRef]
  51. S. Wiederhorn, D. E. Roberts, “Fracture mechanics study of skylab windows,” Rep. 10892, prepared for NASA Manned Spacecraft Center, Structures and Mechanics Division, PR1-168-022, T-5330A (National Bureau of Standards, Washington, D.C., 1972).
  52. R. F. Cook, B. R. Lawn, “A modified indentation toughness technique,” J. Am. Ceram. Soc. 66, C200–C201 (1983). [CrossRef]
  53. A. Arora, D. B. Marshall, B. R. Lawn, “Indentation deformation/fracture of normal and anomalous glasses,” J. Non-Cryst. Solids 31, 415–428 (1979). [CrossRef]
  54. J. D. Mackenzie, “High-pressure effects on oxide glasses: I. densification in rigid state,” J. Am. Ceram. Soc. 46, 461–470 (1963). [CrossRef]
  55. J. C. Lambropoulos, T. Fang, S. Xu, S. M. Gracewski, “Constitutive law for the densification of fused silica, with applications in polishing and microgrinding,” in Optical Manufacturing and Testing, V. J. Doherty, ed., Proc. SPIE2536, 275–286 (1995).
  56. S. M. Wiederhorn, “Fracture surface energy of glass,” J. Am. Ceram. Soc. 52, 99–105 (1969). [CrossRef]
  57. L. M. Barker, “Short bar specimens for KIc measurements,” in Fracture Mechanics Applied to Brittle Materials, S. W. Freiman, ed. (American Society for Testing and Materials, Philadelphia, Pa., 1979), pp. 73–82. [CrossRef]
  58. R. Hill, The Mathematical Theory of Plasticity (Oxford U. Press, New York, 1950).
  59. H. H. Karow, Fabrication Methods for Precision Optics (Wiley, New York, 1993).
  60. A. Lindquist, S. D. Jacobs, A. Feltz, “Surface preparation technique for rapid measurement of subsurface damage depth,” in Optical Computing, Vol. 9 of 1989 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1989), paper SMC3-1/57.
  61. Y. Zhou, P. D. Funkenbusch, D. J. Quesnel, D. Golini, A. Lindquist, “Effect of etching and imaging mode on the measurement of subsurface damage in microground optical glasses,” J. Am. Ceram. Soc. 77, 3277–3280 (1994). [CrossRef]
  62. B. R. Lawn, T. Jensen, A. Arora, “Brittleness as an indentation size effect,” J. Mater. Sci. 11, 573–575 (1975). [CrossRef]
  63. T. S. Izumitani, I. Suzuki, “Indentation hardness and lapping hardness of optical glass,” Glass Technol. 14, 35–41 (1973).
  64. T. L. Anderson, Fracture Mechanics: Fundamentals and Applications, 2nd ed. (CRC Press, Cleveland, Ohio, 1995).
  65. S. S. Chiang, D. B. Marshall, A. G. Evans, “The response of solids to elastic/plastic indentation, I. stresses and residual stresses,” J. Appl. Phys. 53, 298–311 (1982). [CrossRef]
  66. S. S. Chiang, D. B. Marshall, A. G. Evans, “The response of solids to elastic/plastic indentation, II. fracture initiation,” J. Appl. Phys. 53, 312–317 (1982). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited