OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 35, Iss. 22 — Aug. 1, 1996
  • pp: 4533–4540

Time-resolved imaging on a realistic tissue phantom: μs′ and μa images versus time-integrated images

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini  »View Author Affiliations

Applied Optics, Vol. 35, Issue 22, pp. 4533-4540 (1996)

View Full Text Article

Enhanced HTML    Acrobat PDF (664 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A method is proposed by which we construct images through turbid media, plotting directly either the transport-scattering coefficient μs′ or the absorption coefficient μa . These optical parameters are obtained from the best fit of the time-resolved transmittance curves with a diffusion model. Measurements were performed with a time-correlated single-photon counting system on realistic tissue phantoms simulating a tumor mass within a breast. Images were obtained with an incident power of <1 mW and an acquisition time of 1 s/point. Comparison of μs′ and μa images with time-integrated images constructed from the same experimental data shows that the fitting method discriminates between scattering and absorption inhomogeneities and improves image quality for scattering but not for absorption inhomogeneities.

© 1996 Optical Society of America

Original Manuscript: May 30, 1995
Revised Manuscript: February 23, 1996
Published: August 1, 1996

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, "Time-resolved imaging on a realistic tissue phantom: μs′ and μa images versus time-integrated images," Appl. Opt. 35, 4533-4540 (1996)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. A. Wingo, T. Tong, S. Bolden, “Cancer Statistics, 1995,” CA Cancer J. Clin. 45, 8–30 (1995). [CrossRef] [PubMed]
  2. 1990 Recommendations of the International Commission on Radiological Protection, ICRP Publication 60 (Pergamon, New York, 1991).
  3. B. C. Wilson, E. M. Sevick, M. S. Patterson, B. Chance, “Time-dependent optical spectroscopy and imaging for biomedical applications,” Proc. IEEE 80, 918–930 (1992). [CrossRef]
  4. G. Mitic, J. Kölzer, J. Otto, E. Piles, G. Sölkner, W. Zinth, “Time-gated transillumination of biological tissues and tissuelike phantoms,” Appl. Opt. 33, 6699–6710 (1994). [CrossRef] [PubMed]
  5. J. C. Hebden, D. T. Delpy, “Enhanced time-resolved imaging with a diffusion model of photon transport,” Opt. Lett. 19, 311–313 (1994). [CrossRef] [PubMed]
  6. J. C. Hebden, K. S. Wong, “Time-resolved optical tomography,” Appl. Opt. 32, 372–380 (1993). [CrossRef] [PubMed]
  7. S. Andersson-Engels, R. Berg, S. Svanberg, O. Jarlman, “Time-resolved transillumination for medical diagnosis,” Opt. Lett. 15, 1179–1181 (1990). [CrossRef] [PubMed]
  8. M. R. Hee, J. A. Izatt, E. A. Swanson, J. G. Fujimoto, “Femtosecond transillumination tomography in thick tissues,” Opt. Lett. 18, 1107–1109 (1993). [CrossRef] [PubMed]
  9. M. D. Duncan, R. Mahon, L. L. Tankersley, J. Reintjes, “Time-gated imaging through scattering media using stimulated Raman amplification,” Opt. Lett. 16, 1868–1870 (1991). [CrossRef] [PubMed]
  10. J. Watson, P. Georges, T. Lepine, B. Alonzi, A. Brun, “Imaging in diffuse media with ultrafast degenerate optical parametric amplification,” Opt. Lett. 20, 231–233 (1995). [CrossRef] [PubMed]
  11. M. R. Hee, J. A. Izatt, J. M. Jacobson, J. G. Fujimoto, “Femtosecond transillumination optical coherence tomography,” Opt. Lett. 18, 950–952 (1993). [CrossRef] [PubMed]
  12. B. B. Das, K. M. Yoo, R. R. Alfano, “Ultrafast time-gated imaging in thick tissues: a step toward optical tomography,” Opt. Lett. 18, 1092–1094 (1993). [CrossRef] [PubMed]
  13. J. C. Hebden, R. A. Kruger, “Transillumination imaging performance: spatial resolution simulation studies,” Med. Phys. 17, 41–47 (1990). [CrossRef] [PubMed]
  14. H. Key, E. R. Davies, P. C. Jackson, P. N. T. Wells, “Monte Carlo modeling of light propagation in breast tissue,” Phys. Med. Biol. 36, 591–602 (1991). [CrossRef] [PubMed]
  15. G. Zaccanti, P. Donelli, “Attenuation of energy in time-gated transillumination imaging: numerical results,” Appl. Opt. 33, 7023–7030 (1994). [CrossRef] [PubMed]
  16. M. A. O’Leary, D. A. Boas, B. Chance, A. G. Yodh, “Experimental images of heterogeneous turbid media by frequency-domain diffusing photon tomography,” Opt. Lett. 20, 426–428 (1995). [CrossRef]
  17. L. O. Svaasand, B. J. Tromberg, R. C. Haskell, T.-T. Tsay, M. W. Berns, “Tissue characterization and imaging using photon density waves,” Opt. Eng. 32, 258–266 (1993). [CrossRef]
  18. A. Duncan, T. L. Whitlock, M. Cope, D. T. Delpy, “A multiwavelength, wideband, intensity modulated optical spectrometer for near-infrared spectroscopy and imaging,” in Photon Migration and Imaging in Random Media and Tissues, B. Chance, R. R. Alfano, eds., Proc. SPIE1888, 248–257 (1993).
  19. J. Fishkin, E. Gratton, “Propagation of photon density waves in strongly scattering media containing an absorbing semi-infinite plane bounded by a straight edge,” J. Opt. Soc. Am. A 10, 127–140 (1993). [CrossRef] [PubMed]
  20. A. Knuttel, J. M. Schmitt, J. R. Knutson, “Spatial localization of absorbing bodies by interfering diffusive photon-density waves,” Appl. Opt. 32, 381–389 (1993). [CrossRef] [PubMed]
  21. S. Feng, F.-A. Zeng, B. Chance, “Photon migration in the presence of a single defect: a perturbation analysis,” Appl. Opt. 34, 3826–3837 (1995). [CrossRef] [PubMed]
  22. J. C. Hebden, “Time-resolved imaging of opaque and transparent spheres embedded in a highly scattering medium,” Appl. Opt. 32, 3837–3841 (1993). [PubMed]
  23. A. H. Gandjbakhche, R. Nossal, R. F. Bonner, “Resolution limits for optical transillumination of abnormalities deeply embedded in tissues,” Med. Phys. 21, 185–191 (1994). [CrossRef] [PubMed]
  24. J. A. Moon, R. Mahon, M. D. Duncan, R. Reintjes, “Resolution limits for imaging through turbid media with diffuse light,” Opt. Lett. 18, 1591–1593 (1993). [CrossRef] [PubMed]
  25. Y. Chen, “Characterization of the image resolution for the first-arriving-light method,” Appl. Opt. 33, 2544–2552 (1994). [CrossRef] [PubMed]
  26. J. C. Hebden, D. J. Hall, D. T. Delpy, “The spatial resolution performance of a time resolved optical imaging system using temporal extrapolation,” Med. Phys. 22, 201–208 (1995). [CrossRef] [PubMed]
  27. R. Cubeddu, M. Musolino, A. Pifferi, P. Taroni, G. Valentini, “Time-resolved reflectance: a systematic study for the application to the optical characterization of tissue,” IEEE J. Quantum Electron. 30, 2421–2430 (1994). [CrossRef]
  28. M. S. Patterson, B. Chance, B. C. Wilson, “Time-resolved reflectance and transmittance for the noninvasive measurement of tissue optical properties,” Appl. Opt. 28, 2331–2336 (1989). [CrossRef] [PubMed]
  29. L. S. Lasdon, A. D. Waren, A. Jain, M. Ratner, “Design and testing of a generalized reduced gradient code for nonlinear programming,” Assoc. Comput. Mach. Trans. Math. Software 4, 34–50 (1978). [CrossRef]
  30. K. M. Yoo, F. Liu, R. R. Alfano, “When does the diffusion approximation fail to describe photon transport in random media?,” Phys. Rev. Lett. 64, 2647–2650 (1990); Phys. Rev. Lett. 65, 2210–2211 (1990). [CrossRef] [PubMed]
  31. R. C. Haskell, L. O. Svaasand, T.-T. Tsay, T.-C. Feng, M. S. McAdams, B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A 11, 2727–2741 (1994). [CrossRef]
  32. S. J. Madsen, B. C. Wilson, M. S. Patterson, Y. D. Park, S. L. Jacques, Y. Hefetz, “Experimental test of a simple diffusion model for the estimation of scattering and absorption coefficients of turbid media from time-resolved diffuse reflectance measure,” Appl. Opt. 31, 3509–3517 (1992). [CrossRef] [PubMed]
  33. S. Andersson-Engels, R. Berg, S. Svanberg, “Effects of optical constants on time-gated transillumination of tissue and tissuelike media,” J. Photochem. Photobiol. B 16, 155–167 (1992). [CrossRef] [PubMed]
  34. M. Firbank, D. T. Delpy, “A design for a stable and reproducible phantom for use in near-infrared imaging and spectroscopy,” Phys. Med. Biol. 38, 847–853 (1993). [CrossRef]
  35. M. Firbank, M. Oda, D. T. Delpy, “An improved design for a stable and reproducible phantom for use in near-infrared imaging and spectroscopy,” Phys. Med. Biol. 40, 955–961 (1995). [CrossRef] [PubMed]
  36. V. G. Peters, D. R. Wyman, M. S. Patterson, G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 35, 1317–1334 (1990). [CrossRef] [PubMed]
  37. K. Suzuki, Y. Yamashita, K. Ohta, B. Chance, “Quantitative measurement of optical parameters in the breast using time-resolved spectroscopy. Phantom and preliminary inυiυo results,” Invest. Radiol. 29, 410–414 (1994). [CrossRef] [PubMed]
  38. B. Conway, “Nationwide Evaluation of X-ray Trends (NEXT): tabulation and graphical summary of 1988 mammography survey,” presented at the Conference of Radiation Control Program Directors, Salt Lake City, Utah, Oct. 1990.
  39. E. S. deParedes, Atlas of Film-Screen Mammography (Urban and Schwarzenberg, Baltimore, Md., 1990).
  40. J. C. Hebden, “Imaging through scattering media using characteristics of the temporal distribution of transmitted laser pulses,” Opt. Laser Technol. 27, 263–268 (1995). [CrossRef]
  41. J. C. Hebden, D. J. Hall, M. Firbank, D. T. Delpy, “Time-resolved optical imaging of a solid tissue-equivalent phantom,” Appl. Opt. 34, 8038–8047 (1995). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited