OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 35, Iss. 24 — Aug. 20, 1996
  • pp: 4705–4723

Two-tone frequency-modulation spectroscopy for quantitative measurements of gaseous species: theoretical, numerical, and experimental investigation of line shapes

V. G. Avetisov and P. Kauranen  »View Author Affiliations


Applied Optics, Vol. 35, Issue 24, pp. 4705-4723 (1996)
http://dx.doi.org/10.1364/AO.35.004705


View Full Text Article

Enhanced HTML    Acrobat PDF (542 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The capability of retrieving spectral information from line shapes recorded by two-tone frequency-modulation spectroscopy (TTFMS) is investigated. A TTFMS theory accounting for dispersion and nonlinear distortion of diode laser frequency modulation response is presented. The adequacy of the theory for a detailed modeling of line shapes recorded with high resolution is examined. An extensive error analysis of line parameters (i.e., width, intensity, and line center) retrieved by a nonlinear least-squares fitting procedure is made. Plots of residual errors with characteristic signatures that are due to incorrectly assigned modulation parameters and choice of line profile are presented. In least-squares fits to experimental oxygen data with a Voigt profile influence from collisional (Dicke) narrowing is clearly exhibited, and when we used a collisionally narrowed line profile deviations of the model were reduced to less than 0.2%. We demonstrate that accurate quantitative measurements by TTFMS over a wide range of concentrations, temperatures, and pressures are possible.

© 1996 Optical Society of America

History
Original Manuscript: October 13, 1995
Revised Manuscript: March 21, 1996
Published: August 20, 1996

Citation
V. G. Avetisov and P. Kauranen, "Two-tone frequency-modulation spectroscopy for quantitative measurements of gaseous species: theoretical, numerical, and experimental investigation of line shapes," Appl. Opt. 35, 4705-4723 (1996)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-35-24-4705


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. C. Stanton, J. A. Silver, “Measurements in the HCl 3–0 band using a near-IR InGaAsP diode laser,” Appl. Opt. 27, 5009–5015 (1988). [CrossRef] [PubMed]
  2. C. B. Carlisle, H. Riris, L.-G. Wang, G. R. Janik, T. F. Gallagher, A. L. Pineiro, R. H. Tipping, “Measurement of high overtone intensities of HBr by two-tone frequency-modulation spectroscopy,” J. Mol. Spectrosc. 130, 395–406 (1988). [CrossRef]
  3. C. B. Carlisle, D. E. Cooper, “Tunable diode laser frequency modulation spectroscopy through an optical fiber: high sensitivity detection of water vapor,” Appl. Phys. Lett. 56, 805–807 (1990). [CrossRef]
  4. H. Riris, C. B. Carlisle, D. E. Cooper, L. Wang, T. F. Gallagher, R. H. Tipping, “Measurement of the strengths of 1–0 and 3–0 transitions of HI using frequency modulation spectroscopy,” J. Mol. Spectrosc. 146, 381–388 (1991). [CrossRef]
  5. T. J. Johnson, F. G. Wienhold, J. P. Burrows, G. W. Harris, “Frequency modulation spectroscopy at 1.3 μm using InGaAsP lasers: a prototype field instrument for atmospheric chemistry research,” Appl. Opt. 30, 407–413 (1991). [CrossRef] [PubMed]
  6. P. Kauranen, I. Harwigsson, B. Jönsson, “Relative vapor pressure measurements using a frequency modulated tunable diode laser, a tool for water activity determination in solutions,” J. Phys. Chem. 98, 1411–1415 (1994). [CrossRef]
  7. P. Kauranen, H. M. Hertz, S. Svanberg, “Tomographic imaging of fluid flows by the use of two-tone frequency-modulation spectroscopy,” Opt. Lett. 19, 1489–1491 (1994). [CrossRef] [PubMed]
  8. H. Riris, C. B. Carlisle, L. W. Carr, D. E. Cooper, R. U. Martinelli, R. J. Menna, “Design of an open path near-infrared diode laser sensor: application to oxygen, water, and carbon dioxide vapor detection,” Appl. Opt. 33, 7059–7066 (1994). [CrossRef] [PubMed]
  9. L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. M. Devi, J. M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992). [CrossRef]
  10. G. R. Janik, C. B. Carlisle, T. F. Gallagher, “Two-tone frequency modulation spectroscopy,” J. Opt. Soc. Am. B 3, 1070–1074 (1986). [CrossRef]
  11. D. E. Cooper, R. E. Warren, “Frequency modulation spectroscopy with lead-salt diode lasers: a comparison of single tone and two-tone techniques,” Appl. Opt. 26, 3726–3732 (1987). [CrossRef] [PubMed]
  12. D. E. Cooper, R. E. Warren, “Two-tone optical heterodyne spectroscopy with diode lasers: theory of line shapes and experimental results,” J. Opt. Soc. Am. B 4, 470–480 (1987). [CrossRef]
  13. V. Dana, J.-Y. Mandin, C. Camy-Peyret, J.-M. Flaud, J. P. Chevillard, R. L. Hawkins, J.-L. Delfau, “Measurements of collisional linewidths in the ν2 band of H2O from Fourier-transformed flame spectra,” Appl. Opt. 31, 1928–1936 (1992). [CrossRef] [PubMed]
  14. A. S. Pine, “Self-, N2, O2, H2, and He broadening in the ν3 band Q branch of CH4,” J. Chem. Phys. 97, 773–785 (1992). [CrossRef]
  15. D. C. Benner, C. P. Rinsland, V. M. Devi, M. A. H. Smith, D. Atkins, “A multispectrum nonlinear least squares fitting technique,” J. Quant. Spectrosc. Radiat. Transfer 53, 705–721 (1995). [CrossRef]
  16. M. Carlotti, “Global-fit approach to the analysis of limb-scanning atmospheric measurements,” Appl. Opt. 27, 3250–3254 (1988). [CrossRef] [PubMed]
  17. X. Ouyang, P. L. Varghese, “Reliable and efficient program for fitting Galatry and Voigt profiles to spectral data on multiple lines,” Appl. Opt. 28, 1538–1545 (1989). [CrossRef] [PubMed]
  18. D. S. Baer, R. K. Hanson, “Tunable diode laser absorption diagnostics for atmospheric pressure plasmas,” J. Quant. Spectrosc. Radiat. Transfer 47, 455–475 (1992). [CrossRef]
  19. M. P. Arroyo, R. K. Hanson, “Absorption measurements of water-vapor concentration, temperature, and line-shape parameters using tunable InGaAsP diode laser,” Appl. Opt. 32, 6104–6116 (1993). [CrossRef] [PubMed]
  20. R. H. Dicke, “The effect of collisions upon the Doppler width of spectral lines,” Phys. Rev. 89, 472–473 (1953). [CrossRef]
  21. K. J. Ritter, T. D. Wilkerson, “High-resolution spectroscopy of the oxygen A band,” J. Mol. Spectrosc. 121, 1–19 (1987). [CrossRef]
  22. T. Giesen, R. Schieder, G. Winnewisser, K. M. T. Yamada, “Precise measurements of pressure broadening and shift for several H2O lines in the ν2 band by argon, nitrogen, oxygen, and air,” J. Mol. Spectrosc. 153, 406–418 (1992). [CrossRef]
  23. V. G. Avetisov, A. I. Nadezhdinskii, A. N. Khusnutdinov, P. M. Omarova, M. V. Zyrianov, “Diode laser spectroscopy of water vapor in 1.8 μm: line profile measurements,” J. Mol. Spectrosc. 160, 326–334 (1993). [CrossRef]
  24. A. S. Pine, V. N. Markov, G. Buffa, O. Tarrini, “N2, O2, H2, Ar, and He broadening in the ν1 band of NH3,” J. Quant. Spectrosc. Radiat. Transfer 50, 337–348 (1993). [CrossRef]
  25. E. I. Moses, C. L. Tang, “High sensitivity laser wavelength modulation spectroscopy,” Opt. Lett. 1, 115–117 (1977). [CrossRef] [PubMed]
  26. G. C. Bjorklund, “Frequency-modulation spectroscopy: a new method for measuring weak absorptions and dispersions,” Opt. Lett. 5, 15–17 (1980). [CrossRef] [PubMed]
  27. G. R. Janik, C. B. Carlisle, T. F. Gallagher, “Two-tone frequency modulation spectroscopy,” J. Opt. Soc. Am. B 3, 1070–1074 (1986). [CrossRef]
  28. D. E. Cooper, J. P. Watjen, “Two-tone optical heterodyne spectroscopy with a tunable lead-salt diode laser,” Opt. Lett. 11, 606–608 (1986). [CrossRef] [PubMed]
  29. L. Wang, H. Riris, C. B. Carlisle, T. F. Gallagher, “Comparison of approaches to modulation spectroscopy with GaAlAs semiconductor lasers: application to water vapor,” Appl. Opt. 27, 2071–2077 (1988). [CrossRef] [PubMed]
  30. J. A. Silver, “Frequency modulation spectroscopy for trace species detection: theory and comparison among experimental methods,” Appl. Opt. 31, 707–717 (1992). [CrossRef] [PubMed]
  31. D. S. Bomse, A. C. Stanton, J. A. Silver, “Frequency modulation and wavelength modulation spectroscopies: comparison of experimental methods using a lead salt diode laser,” Appl. Opt. 31, 718–731 (1992). [CrossRef] [PubMed]
  32. F. S. Pavone, M. Inguscio, “Frequency and wavelength modulation spectroscopies: comparison of experimental methods using an AlGaAs diode laser,” Appl. Phys. B 56, 118–122 (1993). [CrossRef]
  33. M. Gehrtz, G. C. Bjorklund, E. A. Whittaker, “Quantum-limited laser frequency-modulation spectroscopy,” J. Opt. Soc. Am. B 2, 1510–1526 (1985). [CrossRef]
  34. P. Werle, F. Slemr, M. Gehrtz, C. Brauchle, “Quantum-limited FM-spectroscopy with a lead-salt diode laser,” Appl. Phys. B 33, 99–108 (1989). [CrossRef]
  35. C. B. Carlisle, D. E. Cooper, “Tunable-diode-laser frequency-modulation spectroscopy using balanced homodyne detection,” Opt. Lett. 14, 1306–1308 (1989). [CrossRef] [PubMed]
  36. C. B. Carlisle, D. E. Cooper, H. Preier, “Quantum noise-limited FM spectroscopy with a lead-salt diode laser,” Appl. Opt. 28, 2567–2576 (1989). [CrossRef] [PubMed]
  37. J. M. Supplee, E. A. Whittaker, W. Lenth, “Theoretical description of frequency modulation and wavelength modulation spectroscopy,” Appl. Opt. 33, 6294–6302 (1994). [CrossRef] [PubMed]
  38. J. Reid, D. Labrie, “Second-harmonic detection with tunable diode lasers: comparison of experiment and theory,” Appl. Phys. B 26, 203–210 (1981). [CrossRef]
  39. N. Goldstein, S. Adler-Golden, J. Lee, F. Bien, “Measurement of molecular concentrations and line parameters using line-locked second harmonic spectroscopy with an AlGaAs diode laser,” Appl. Opt. 31, 3409–3415 (1992). [CrossRef] [PubMed]
  40. S. Adler-Golden, J. Lee, N. Goldstein, “Diode laser measurements of temperature dependent line parameters for water vapor near 820 nm,” J. Quant. Spectrosc. Radiat. Transfer 48, 527–535 (1992). [CrossRef]
  41. L. C. Philippe, R. K. Hanson, “Laser diode wavelength-modulation spectroscopy for simultaneous measurement of temperature, pressure, and velocity in shock-heated oxygen flows,” Appl. Opt. 32, 6090–6103 (1993). [CrossRef] [PubMed]
  42. N. C. Wong, J. L. Hall, “High-resolution measurement of water-vapor overtone absorption in the visible by frequency-modulation spectroscopy,” J. Opt. Soc. Am. B 6, 2300–2308 (1989). [CrossRef]
  43. P. Kauranen, V. G. Avetisov, “Determination of absorption line parameters using two-tone frequency-modulation spectroscopy with diode lasers,” Opt. Commun. 106, 213–217 (1994). [CrossRef]
  44. V. G. Avetisov, P. Kauranen, “High-resolution measurements using two-tone frequency-modulation spectroscopy with diode lasers,” submitted to Appl. Opt.
  45. M.-S. Lin, S.-Y. J. Wang, N. K. Dutta, “Measurements and modeling of the harmonic distortion in InGaAsP distributed feedback lasers,” IEEE J. Quantum Electron. 26, 998–1004 (1990). [CrossRef]
  46. G. Morthier, F. Libbrecht, K. David, P. Vankwikelberge, R. G. Baets, “Theoretical investigation of the second-order harmonic distortion in the AM response of 1.55 μm F-P and DFB lasers,” IEEE J. Quantum Electron. 27, 1990–2002 (1991). [CrossRef]
  47. K. Y. Lau, A. Yariv, “Intermodulation distortion in a directly modulated semiconductor injection laser,” Appl. Phys. Lett. 45, 1034–1036 (1984). [CrossRef]
  48. P. L. Varghese, R. K. Hanson, “Collisional narrowing effects on spectral line shapes measured at high resolution,” Appl. Opt. 23, 2376–2385 (1984). [CrossRef] [PubMed]
  49. L. Galatry, “Simultaneous effect of Doppler and foreign gas broadening on spectral shapes,” Phys. Rev. 122, 1218–1223 (1961). [CrossRef]
  50. S. G. Rautian, I. I. Sobelman, “Effect of collisions on the Doppler broadening of spectral lines,” Sov. Phys. Usp. 9, 701–716 (1967). [CrossRef]
  51. F. Herbert, “Spectrum line profiles: a generalized Voigt function including collisional narrowing,” J. Quant. Spectrosc. Radiat. Transfer 14, 943–951 (1974). [CrossRef]
  52. M. Abramowitz, I. A. Stegun, eds., Handbook of Mathematical Functions (Dover, New York, 1972).
  53. W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes (Cambridge U. Press, Cambridge, U.K., 1989).
  54. J. Humlicek, “Optimized computation of the Voigt and complex probability functions,” J. Quant. Spectrosc. Radiat. Transfer 27, 437–444 (1982); F. Schreier, “The Voigt and complex error function: a comparison of computational methods,” J. Quant. Spectrosc. Radiat. Transfer 48, 743–762 (1992). [CrossRef]
  55. E. E. Whiting, “An empirical approximation to the Voigt profile,” J. Quant. Spectrosc. Radiat. Transfer 8, 1379–1384 (1968); J. J. Olivero, R. L. Longbothum, “Empirical fits to the Voigt line width: a brief review,” J. Quant. Spectrosc. Radiat. Transfer 17, 233–236 (1977). [CrossRef]
  56. J. H. Shaw, N. Tu, D. L. Agresta, “Sources of systematic errors in line intensities,” Appl. Opt. 24, 2437–2441 (1985). [CrossRef] [PubMed]
  57. C. L. Brummel, L. A. Philips, “Error analysis in rotationally resolved spectra: least-squares and Monte Carlo methods,” J. Mol. Spectrosc. 159, 287–299 (1993). [CrossRef]
  58. M. Osinski, J. Buus, “Linewidth broadening factor in semiconductor lasers: an overview,” IEEE J. Quantum Electron. QE-23, 9–29 (1987). [CrossRef]
  59. W. Lenth, “High frequency heterodyne spectroscopy with current-modulated diode lasers,” IEEE J. Quantum Electron. QE-20, 1045–1050 (1984). [CrossRef]
  60. S. Kobayashi, Y. Yamamoto, M. Ito, T. Kimura, “Direct frequency modulation in GaAlAs semiconductor lasers,” IEEE J. Quantum Electron. QE-18, 582–595 (1982). [CrossRef]
  61. M. Imai, K. Kawakita, “Measurement of direct frequency modulation characteristics of laser diodes by Michelson interferometry,” Appl. Opt. 29, 348–353 (1990). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited