OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 35, Iss. 24 — Aug. 20, 1996
  • pp: 4927–4940

Scattering of light by polydisperse, randomly oriented, finite circular cylinders

Michael I. Mishchenko, Larry D. Travis, and Andreas Macke  »View Author Affiliations

Applied Optics, Vol. 35, Issue 24, pp. 4927-4940 (1996)

View Full Text Article

Enhanced HTML    Acrobat PDF (16591 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We use the T-matrix method, as described by Mishchenko [Appl. Opt. 32, 4652 (1993)], to compute rigorously light scattering by finite circular cylinders in random orientation. First we discuss numerical aspects of T-matrix computations specific for finite cylinders and present results of benchmark computations for a simple cylinder model. Then we report results of extensive computations for polydisperse, randomly oriented cylinders with a refractive index of 1.53 + 0.008i, diameter-to-length ratios of 1/2, 1/1.4, 1, 1.4, and 2, and effective size parameters ranging from 0 to 25. These computations parallel our recent study of light scattering by polydisperse, randomly oriented spheroids and are used to compare scattering properties of the two classes of simple convex particles. Despite the significant difference in shape between the two particle types (entirely smooth surface for spheroids and sharp rectangular edges for cylinders), the comparison shows rather small differences in the integral photometric characteristics (total optical cross sections, single-scattering albedo, and asymmetry parameter of the phase function) and the phase function. The general patterns of the other elements of the scattering matrix for cylinders and aspect-ratio-equivalent spheroids are also qualitatively similar, although noticeable quantitative differences can be found in some particular cases. In general, cylinders demonstrate much less shape dependence of the elements of the scattering matrix than do spheroids. Our computations show that, like spheroids and bispheres, cylinders with surface-equivalent radii smaller than a wavelength can strongly depolarize backscattered light, thus suggesting that backscattering depolarization for nonspherical particles cannot be universally explained by using only geometric-optics considerations.

© 1996 Optical Society of America

Original Manuscript: September 26, 1995
Revised Manuscript: February 16, 1996
Published: August 20, 1996

Michael I. Mishchenko, Larry D. Travis, and Andreas Macke, "Scattering of light by polydisperse, randomly oriented, finite circular cylinders," Appl. Opt. 35, 4927-4940 (1996)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. I. Mishchenko, “Light scattering by size-shape distributions of randomly oriented axially symmetric particles of a size comparable to a wavelength,” Appl. Opt. 32, 4652–4666 (1993). [CrossRef] [PubMed]
  2. M. I. Mishchenko, L. D. Travis, “Light scattering by polydisperse, rotationally symmetric nonspherical particles: linear polarization,” J. Quant. Spectrosc. Radiat. Transfer 51, 759–778 (1994). [CrossRef]
  3. M. I. Mishchenko, L. D. Travis, “Light scattering by polydispersions of randomly oriented spheroids with sizes comparable to wavelengths of observation,” Appl. Opt. 33, 7206–7225 (1994). [CrossRef] [PubMed]
  4. M. I. Mishchenko, L. D. Travis, D. W. Mackowski, “T-matrix computations of light scattering by nonspherical particles: a review,” J. Quant. Spectrosc. Radiat. Transfer 55, 535–575 (1996). [CrossRef]
  5. P. C. Waterman, “Symmetry, unitarity, and geometry in electromagnetic scattering,” Phys. Rev. D 3, 825–839 (1971). [CrossRef]
  6. M. I. Mishchenko, “Light scattering by randomly oriented axially symmetric particles,” J. Opt. Soc. Am. A 8, 871–882 (1991); “Erratum,” 9, 497 (1992). [CrossRef]
  7. J. F. de Haan, “Effects of aerosols on the brightness and polarization of cloudless planetary atmospheres,” Ph.D. dissertation (Free University, Amsterdam, 1987).
  8. W. J. Wiscombe, A. Mugnai, “Scattering from nonspherical Chebyshev particles. 2: means of angular scattering patterns,” Appl. Opt. 27, 2405–2421 (1988). [CrossRef] [PubMed]
  9. P. Stammes, “Light scattering properties of aerosols and the radiation inside a planetary atmosphere,” Ph.D. dissertation (Free University, Amsterdam, 1989).
  10. F. Kuik, J. F. de Haan, J. W. Hovenier, “Single scattering of light by circular cylinders,” Appl. Opt. 33, 4906–4918 (1994). [CrossRef] [PubMed]
  11. W. M. F. Wauben, J. F. de Haan, J. W. Hovenier, “Influence of particle shape on the polarized radiation in planetary atmospheres,” J. Quant. Spectrosc. Radiat. Transfer 50, 237–246 (1993). [CrossRef]
  12. H. C. van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957).
  13. J. E. Hansen, L. D. Travis, “Light scattering in planetary atmospheres,” Space Sci. Rev. 16, 527–610 (1974). [CrossRef]
  14. C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
  15. F. Kuik, J. F. de Haan, J. W. Hovenier, “Benchmark results for single scattering by spheroids,” J. Quant. Spectrosc. Radiat. Transfer 47, 477–489 (1992). [CrossRef]
  16. J. W. Hovenier, C. V. M. van der Mee, “Fundamental relationships relevant to the transfer of polarized light in a scattering atmosphere,” Astron. Astrophys. 128, 1–16 (1983).
  17. J. F. de Haan, P. B. Bosma, J. W. Hovenier, “The adding method for multiple scattering calculations of polarized light,” Astron. Astrophys. 183, 371–391 (1987).
  18. I. M. Gelfand, R. A. Minlos, Z. Y. Shapiro, Representations of the Rotation and Lorentz Groups and Their Applications (Pergamon, Oxford, 1963).
  19. G. A. d’Almeida, P. Koepke, E. P. Shettle, Atmospheric Aerosols (Deepak, Hampton, Va., 1991).
  20. A. Mugnai, W. J. Wiscombe, “Scattering from nonspherical Chebyshev particles. 1: cross sections, single-scattering albedo, asymmetry factor, and backscattered fraction,” Appl. Opt. 25, 1235–1244 (1986). [CrossRef] [PubMed]
  21. M. I. Mishchenko, D. W. Mackowski, L. D. Travis, “Scattering of light by bispheres with touching and separated components,” Appl. Opt. 34, 4589–4599 (1995). [CrossRef] [PubMed]
  22. L. Tsang, J. A. Kong, R. T. Shin, Theory of Microwave Remote Sensing (Wiley, New York, 1985).
  23. M. I. Mishchenko, L. D. Travis, “T-matrix computations of light scattering by large spheroidal particles,” Opt. Commun. 109, 16–21 (1994). [CrossRef]
  24. D. S. Saxon, “Tensor scattering matrix for the electromagnetic field,” Phys. Rev. 100, 1771–1775 (1955). [CrossRef]
  25. F. Kuik, “Single scattering of light by ensembles of particles with various shapes,” Ph.D. dissertation (Free University, Amsterdam, 1992).
  26. C. -R. Hu, G. W. Kattawar, M. E. Parkin, P. Herb, “Symmetry theorems on the forward and backward scattering Mueller matrices for light scattering from a nonspherical dielectric scatterer,” Appl. Opt. 26, 4159–4173 (1987). [CrossRef] [PubMed]
  27. M. I. Mishchenko, J. W. Hovenier, “Depolarization of light backscattered by randomly oriented nonspherical particles,” Opt. Lett. 20, 1356–1358 (1995). [CrossRef] [PubMed]
  28. E. S. Fry, G. W. Kattawar, “Relationships between the elements of the Stokes matrix,” Appl. Opt. 20, 2811–2814 (1981). [CrossRef] [PubMed]
  29. J. W. Hovenier, H. C. van de Hulst, C. V. M. van der Mee, “Conditions for the elements of the scattering matrix,” Astron. Astrophys. 157, 301–310 (1986).
  30. C. V. M. van der Mee, J. W. Hovenier, “Expansion coefficients in polarized light transfer,” Astron. Astrophys. 228, 559–568 (1990).
  31. A. Macke, M. I. Mishchenko, K. Muinonen, B. E. Carlson, “Scattering of light by large nonspherical particles: ray tracing approximation versus T-matrix method,” Opt. Lett. 20, 1934–1936 (1995). [CrossRef] [PubMed]
  32. M. I. Mishchenko, “Reflection of polarized light by plane-parallel slabs containing randomly-oriented, nonspherical particles,” J. Quant. Spectrosc. Radiat. Transfer 46, 171–181 (1991). [CrossRef]
  33. M. I. Mishchenko, D. W. Mackowski, “Electromagnetic scattering by randomly oriented bispheres: comparison of theory and experiment and benchmark calculations,” J. Quant. Spectrosc. Radiat. Transfer 55, 683–694 (1996). [CrossRef]
  34. W. J. Wiscombe, G. W. Grams, “The backscattered fraction in two-stream approximations,” J. Atmos. Sci. 33, 2440–2451 (1976). [CrossRef]
  35. S. F. Marshall, D. S. Covert, R. J. Charlson, “Relationship between asymmetry parameter and hemispheric backscatter ratio: implications for climate forcing by aerosols,” Appl. Opt. 34, 6306–6311 (1995). [CrossRef] [PubMed]
  36. M. I. Mishchenko, L. D. Travis, R. A. Kahn, R. A. West, “Modeling phase functions for dust-like tropospheric aerosols using a shape mixture of randomly oriented polydisperse spheroids,” submitted to J. Geophys. Res.
  37. G. S. Kent, G. K. Yue, U. O. Farrukh, A. Deepak, “Modeling atmospheric aerosol backscatter at CO2 laser wavelengths. 1: aerosol properties, modeling techniques, and associated problems,” Appl. Opt. 22, 1655–1665 (1983). [CrossRef] [PubMed]
  38. Y. Sasano, E. V. Browell, “Light scattering characteristics of various aerosol types derived from multiple wavelength lidar observations,” Appl. Opt. 28, 1670–1679 (1989). [CrossRef] [PubMed]
  39. V. Srivastava, M. A. Jarzembski, D. A. Bowdle, “Comparison of calculated aerosol backscatter at 9.1- and 2.1-μm wavelengths,” Appl. Opt. 31, 1904–1906 (1992). [CrossRef] [PubMed]
  40. G. L. Stephens, Remote Sensing of the Lower Atmosphere (Oxford U. Press, New York, 1994).
  41. S. Asano, M. Sato, “Light scattering by randomly oriented spheroidal particles,” Appl. Opt. 19, 962–974 (1980). [CrossRef] [PubMed]
  42. R. J. Perry, A. J. Hunt, D. R. Huffman, “Experimental determinations of Mueller scattering matrices for nonspherical particles,” Appl. Opt. 17, 2700–2710 (1978). [CrossRef] [PubMed]
  43. K. Sassen, K. -N. Liou, “Scattering of polarized laser light by water droplet, mixed-phase and ice-crystal clouds. Part I: angular scattering patterns,” J. Atmos. Sci. 36, 838–851 (1979). [CrossRef]
  44. M. I. Mishchenko, “Light scattering by nonspherical ice grains: an application to noctilucent cloud particles,” Earth Moon Planets 57, 203–211 (1992). [CrossRef]
  45. K. Sassen, “The polarization radar technique for cloud research: a review and current assessment,” Bull. Am. Meteorol. Soc. 72, 1848–1866 (1991). [CrossRef]
  46. W. L. Eberhard, “Ice-cloud depolarization of backscatter for CO2 and other infrared lidars,” Appl. Opt. 31, 6485–6490 (1992). [CrossRef] [PubMed]
  47. S. J. Ostro, “Planetary radar astronomy,” Rev. Mod. Phys. 65, 1235–1279 (1993). [CrossRef]
  48. L. Stefanutti, M. Morandi, M. Del Guasta, S. Godin, C. David, “Unusual PSCs observed by LIDAR in Antarctica,” Geophys. Res. Lett. 22, 2377–2380 (1995). [CrossRef]
  49. R. H. Zerull, “Scattering measurements of dielectric and absorbing nonspherical particles,” Contrib. Atmos. Phys./Beitr. Phys. Atmos. 49, 168–188 (1976).
  50. K. -N. Liou, H. Lahore, “Laser sensing of cloud composition: a backscattered depolarization technique,” J. Appl. Meteorol. 13, 257–263 (1974). [CrossRef]
  51. M. I. Mishchenko, A. A. Lacis, B. E. Carlson, L. D. Travis, “Nonsphericity of dust-like tropospheric aerosols: implications for aerosol remote sensing and climate modeling,” Geophys. Res. Lett. 22, 1077–1080 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited