OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 35, Iss. 25 — Sep. 1, 1996
  • pp: 5005–5012

Fluorescence of Ta2O5 thin films doped by kilo-electron-volt Er implantation: application to microcavities

H. Rigneault, F. Flory, S. Monneret, S. Robert, and L. Roux  »View Author Affiliations

Applied Optics, Vol. 35, Issue 25, pp. 5005-5012 (1996)

View Full Text Article

Enhanced HTML    Acrobat PDF (763 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Luminescent layers are prepared by the implantation of kilo-electron-volt Er ions into tantalum pentoxide (Ta2O5) thin films made by ion plating. The implantation fluences range from 3.3 × 1014 to 2 × 1015 ions/cm2, and the energies range from 190 to 380 keV. Refractive index, extinction coefficient, and losses on guided propagation are investigated. We show that these Er-implanted layers present an absorption as low as that of the nonimplanted films. When optically pumped with an Ar+ laser (λ = 0.488 μm) beam, implanted films show peaked fluorescence spectra centered near 1.53 and 0.532 μm. We show that the fluorescence intensity is correlated with the intensity of the pump beam in the region where Er ions are implanted. Radiation patterns of Er ions located inside a single layer or inside a Ta2O5/SiO2 dielectric stack made by ion plating are also investigated. We show that, in any case, spontaneous emission of Er ions can be spatially controlled.

© 1996 Optical Society of America

Original Manuscript: November 16, 1995
Revised Manuscript: March 4, 1996
Published: September 1, 1996

H. Rigneault, F. Flory, S. Monneret, S. Robert, and L. Roux, "Fluorescence of Ta2O5 thin films doped by kilo-electron-volt Er implantation: application to microcavities," Appl. Opt. 35, 5005-5012 (1996)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Shuto, K. Hattori, T. Kitagawa, Y. Ohmori, M. Horiguchi, “Erbium-doped phosphosilicate glass waveguide amplifier fabricated by PECVD,” Electro. Lett. 29, 139–141 (1993). [CrossRef]
  2. I. Chartier, B. Ferrand, D. Pelenc, S. J. Field, D. C. Hanna, A. C. Large, A. C. Tropper, “Growth and low-threshold laser oscillation of an epitaxially grown Nd:YAG waveguide,” Opt. Lett. 17, 810–812 (1992). [CrossRef] [PubMed]
  3. E. Lallier, J. P. Pocholle, M. Papuchon, Q. He, M. de Michelli, D. B. Ostrowsky, “Integrated Q-switched Nd:MgO:LiNbO3 waveguide laser,” Electron. Lett. 28, 1428–1429 (1992). [CrossRef]
  4. E. Daran, L. E. Bausa, A. Munoz-Yagüe, C. Fontaine, “Er3+ doping CaF2 layers by molecular beam epitaxy,” Appl. Phys. Lett. 62, 2616–2618 (1993). [CrossRef]
  5. T. Kitagawa, K. Hattori, K. Shuto, M. Yasu, M. Kodayashi, M. Horiguchi, “Amplification in erbium-doped silica-based planar lightwave circuits,” Electron. Lett. 28, 1818–1819 (1992). [CrossRef]
  6. G. Nykolak, M. Hanner, P. C. Becker, J. Shmulovich, Y. H. Wong, “Systems evaluation of an Er3+-doped planar waveguide amplifier,” IEEE Photon. Technol. Lett. 5, 1185–1187 (1993). [CrossRef]
  7. A. Bahtat, M. Bouazaoui, M. Bahtat, J. Mugnier, “Fluoresecence of Er3+ ions in TiO2 planar waveguides prepared by a sol-gel process,” Opt. Commun. 111, 55–60 (1994). [CrossRef]
  8. J. Nilsson, B. Jaskorynska, P. Blixt, “Performance reduction and design modification of erbium-doped fiber amplifiers resulting from pair-induced quenching,” IEEE Photon. Technol. Lett. 5, 1427–1429 (1993). [CrossRef]
  9. P. N. Favennec, L’Implantation Ionique pour la Microélectronique et Pour L’Optique (Masson, Paris, 1993), Chap. 3, p. 63.
  10. See, for example, P. N. Favennec, H. L’Haridon, M. Salvi, D. Moutonnet, Y. Le Guillou, “Luminescence of erbium implanted in various semiconductors: IV,III-V and II-VI materials,” Electron. Lett. 25, 718–719 (1989). [CrossRef]
  11. A. Polman, D. C. Jacobson, D. J. Eaglesham, R. C. Kistler, J. M. Poate, “Optical doping waveguide by MeV Er implantation,” J. Appl. Phys. 70, 3778–3784 (1991). [CrossRef]
  12. E. F. Schubert, A. M. Vredenberg, N. E. J. Hunt, Y. H. Wong, P. C. Becker, J. M. Poate, D. C. Jacobson, L. C. Feldman, G. J. Zydzik, “Giant enhancement of luminescence intensity in Er doped Si/SiO2 resonnant cavities,” Appl. Phys. Lett. 61, 1381–1383 (1992). [CrossRef]
  13. H. K. Pulker, Coatings on Glass (Elsevier, Amsterdam, 1984), pp. 247–256.
  14. H. Yokayama, “Physics and device applications of optical microcavities,” Science 256, 66–70 (1993). [CrossRef]
  15. F. Flory, D. Berthier, H. Rigneault, L. Roux, “Consequence of Ti and Li implantations on the optical properties of single layers of Ta2O5,” in Optical Interference Coatings, Vol. 17 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 309–311.
  16. M. Commandré, P. Roche, “Characterization of absorption by photothermal deflection,” in Thin Films For Optical Systems, F. Flory, ed. (Dekker, New York, 1995), pp. 329–366.
  17. F. Flory, “Guided wave techniques for the characterization of optical coatings,” in Thin Films For Optical Systems, F. Flory, ed. (Dekker, New York, 1995), pp. 393–454.
  18. F. Flory, R. Mollenhauer, E. Pelletier, “Utility of multidielectric coatings for realization of waveguides,” in Optical Interference Coatings, F. Abeles, ed., Proc. SPIE2253, 903–910 (1994).
  19. G. Blasse, B. C. Grabmaier, Luminescent Materials (Springer-Verlag, Berlin, 1994), Chap. 2, p. 26.
  20. H. Rigneault, F. Flory, S. Monneret, “Nonlinear totally reflecting prism coupler: thermomechanic effects and intensity dependant refractive index of thin films,” Appl. Opt. 34, 4358–4368 (1995). [CrossRef] [PubMed]
  21. D. Marcuse, Theory of Dielectric Optical Waveguides (Academic, New York, 1974), pp. 1–49.
  22. Y. Yamamoto, R. E. Slusher, “Optical processes in microcavities,” Phys. Today 46(6), 66–73 (1993). [CrossRef]
  23. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).
  24. P. Goy, J. M. Raimond, M. Gross, S. Haroche, “Observation of cavity-enhanced single atom spontaneous emission,” Phys. Rev. Lett. 50, 1903–1906 (1983). [CrossRef]
  25. F. DeMartini, G. Innocenti, G. R. Jacobivitz, P. Mataloni, “Anomalous spontaneous emission time in a microscopic optical cavity,” Phys. Rev. Lett. 59, 2995–2957 (1987).
  26. M. Suzuki, H. Yokoyama, S. D. Brorson, E. P. Ippen, “Observation of spontaneous emission lifetime change of dye-containing Langmuir–Blodgett films in optical microcavities,” Appl. Phys. Lett. 58, 998–1000 (1991). [CrossRef]
  27. Y. Yamamoto, Coherence, Amplification, and Quantum Effects in Semiconductor Lasers (Wiley-Interscience, New York, 1991), pp. 561–615.
  28. N. J. Hunt, E. F. Shubert, D. L. Sivco, A. Y. Cho, R. F. Kopf, R. A. Logan, G. J. Zydzik, “High efficiency, narrow spectrum resonant cavity light emitting diodes,” in Confined Electrons and Photons. New Physics and Applications, C. Weisbuch, E. Burstein, eds. Vol. 3 of NATO API Series (Plenum, New York, 1995), pp. 701–725.
  29. E. Snoeks, A. Landijk, A. Polman, “Measuring and modifying the spontaneous emission rate of erbium near an interface,” Phys. Rev. Lett. 74, 2459–2462 (1995). [CrossRef] [PubMed]
  30. K. H. Drexhage, “Interaction of light with monomolecular dye layers,” in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1974), pp. 163–232. [CrossRef]
  31. C. Amra, “The role of interfaces and bulks in the energy balance of a thin film multilayer,” Optical Interference Coatings, Vol. 17 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 185–186.
  32. X.-P. Feng, K. Ujihara, “Quantum theory of spontaneous emission in a one-dimensional optical cavity with two-side output coupling,” Phys. Rev. A 41, 2668–2676 (1990). [CrossRef] [PubMed]
  33. G. Bjork, S. Machida, Y. Yamamoto, K. Igeta, “Modification of spontaneous emission rate in planar dielectric microcavity structures,” Phys. Rev. A 44, 669–681 (1991). [CrossRef] [PubMed]
  34. C. Amra, P. Roche, D. Torriccini, “Multiwavelength (0.45–10.6 μm) angle-resolved scatterometer or how to extend the optical window,” Appl. Opt. 32, 5462–5474 (1993). [CrossRef] [PubMed]
  35. Y. Yamamoto, S. Machida, K. Igeta, Y. Horikoshi, “Enhanced and inhibited spontaneous emission of free excitons in GaAs quantum wells in a microcavity,” in Coherence and Quantum Optics VI, J. H. Eberly, ed. (Plenum, New York, 1990), pp. 1249–1257. [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited