OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 35, Iss. 25 — Sep. 1, 1996
  • pp: 5021–5034

Characterization of optical coatings by photothermal deflection

Mireille Commandré and Pierre Roche  »View Author Affiliations


Applied Optics, Vol. 35, Issue 25, pp. 5021-5034 (1996)
http://dx.doi.org/10.1364/AO.35.005021


View Full Text Article

Enhanced HTML    Acrobat PDF (865 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An overview of photothermal deflection principles and applications is given. The modeling of temperature distribution and the calculation of deflection that is due to both the refractive-index gradient and the thermal deformation of the sample are presented. Three configurations usually employed are compared, and their respective advantages are discussed in relation to their application. The calibration for absolute measurement of absorption is detailed, showing that calibration limits the accuracy of measurement. Some examples of specific information obtained by photothermal mapping of absorption are given.

© 1996 Optical Society of America

History
Original Manuscript: November 20, 1995
Revised Manuscript: March 4, 1996
Published: September 1, 1996

Citation
Mireille Commandré and Pierre Roche, "Characterization of optical coatings by photothermal deflection," Appl. Opt. 35, 5021-5034 (1996)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-35-25-5021


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Ristau, X. C. Dang, J. Ebert, “Interface and bulk absorption of oxyde layers and correlation to damage threshold at 1.064 μm,” Nat. Bur. Stand. (U.S.) Spec. Publ. 727, 298–312 (1984).
  2. M. Rahe, E. Oertel, L. Reinhardt, D. Ristau, H. Welling, “Absorption calorimetry and laser induced damage threshold measurements of AR-coated ZnSe and metal mirrors at 10.6 μm,” in Laser-Induced Damage in Optical Materials: 1990, H. E. Bennett, L. L. Chase, A. H. Guenther, B. Newman, M. J. Soileau, eds., Proc. SPIE1441, 113–126 (1990).
  3. R. Chow, S. Falabella, G. E. Loomis, F. Rainer, C. J. Stolz, M. R. Kozlowski, “Absorption and damage thresholds of low-defect-density hafnia deposited with activated oxygen,” in Laser Induced Damage in Optical Materials: 1992, H. E. Bennett, L. L. Chase, A. H. Guenther, B. Newman, M. J. Soileau, eds., Proc. SPIE1848, 349–359 (1992).
  4. M. R. Lange, J. K. MacIver, A. H. Guenther, “Laser damage threshold predictions based on the effects of thermal and optical properties employing a spherical impurity model,” Nat. Bur. Stand. (U.S.) Spec. Publ. 668, 454–465 (1983).
  5. S. M. J. Akhtar, D. Ristau, J. Ebert, “Thermal conductivity of dielectric films and correlation to damage thresholds at 1064 nm,” Natl. Inst. Stand. Technol. Spec. Publ. 752, 345–351 (1986).
  6. A. H. Guenther, J. K. MacIver, “The role of thermal conductivity in the pulsed laser damage sensitivity of optical thin films,” Thin Solid Films 163, 203–214 (1988). [CrossRef]
  7. A. C. Boccara, D. Fournier, W. Jackson, N. M. Amer, “Sensitive photothermal deflection technique for measuring absorption in optically thin media,” Opt. Lett. 5, 377–379 (1980). [CrossRef] [PubMed]
  8. W. B. Jackson, N. M. Amer, A. C. Boccara, D. Fournier, “Photothermal deflection spectroscopy and detection,” Appl. Opt. 20, 1333–1344 (1981). [CrossRef] [PubMed]
  9. M. A. Olmstead, N. M. Amer, S. Kohn, D. Fournier, A. C. Boccara, “Photothermal displacement spectroscopy: an optical probe for solids and surfaces,” Appl. Phys. A 32, 141–154 (1983). [CrossRef]
  10. W. C. Mundy, R. S. Hughes, C. K. Carniglia, “Photothermal deflection microscopy of dielectric thin films,” Appl. Phys. Lett. 43, 985–987 (1983). [CrossRef]
  11. J. A. Abate, A. W. Schmid, M. J. Guardalben, D. J. Smith, S. D. Jacobs, “Characterization of micron-sized defects by photothermal deflection spectroscopy,” Nat. Bur. Stand. (U.S.) Spec. Publ. 688, 385–392 (1983).
  12. M. Commandré, L. Bertrand, G. Albrand, E. Pelletier, “Measurement of absorption losses of optical thin film components by photothermal deflection spectroscopy,” in Optical Components and Systems, A. Masson, ed., Proc. SPIE805, 128–135 (1987).
  13. M. Commandré, E. Pelletier, “Measurements of absorption losses in TiO2 films by a collinear photothermal deflection technique,” Appl. Opt. 29, 4276–4283 (1990). [CrossRef] [PubMed]
  14. M. Commandré, P. Roche, G. Albrand, E. Pelletier, “Photothermal deflection spectroscopy for the study of thin films and optical coatings: measurement of absorption losses and detection of photo-induced changes,” in Optical Thin Films and Applications, R. Herrmann ed., Proc. SPIE1270, 82–93 (1990).
  15. S. E. Watkins, R. Heimlich, R. Reis, “Mapping of absorption in optical coatings,” in Laser-Induced Damage in Optical Materials: 1991, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE1624, 246–255 (1991).
  16. Z. L. Wu, M. Reichling, E. Welsch, D. Schäfer, Z. X. Fan, E. Matthias, “Defect characterisation for thin films through thermal wave detection,” in Laser-Induced Damage in Optical Materials: 1991, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE1624, 271–281 (1991); M. Reichling, E. Welsch, A. Duparré, E. Matthias, “Photothermal absorption microscopy of defects in ZrO2 and MgF2 single-layer films,” Opt. Eng. 33, 1334–1342 (1994). [CrossRef]
  17. Z. L. Wu, M. Reichling, H. Grönbeck, Z. X. Fan, D. Schaefer, E. Matthias, “Photothermal measurement of thermal conductivity of optical coatings,” in Laser-Induced Damage in Optical Materials, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE1624, 331–345 (1991), and references therein; M. Reichling, H. Grönbeck, “Harmonic heat flow in isotropic layered systems and its use for thin film thermal conductivity measurements,” J. Appl. Phys. 75, 1914–1922 (1994). [CrossRef]
  18. M. Commandré, “Caractérisation de l’absorption dans les composants optiques en couches minces par déflexion photothermique,” Thése de Doctorat d’Etat (Université d’Aix-Marseille, Marseille, 1992).
  19. M. Commandré, P. Roche, J. P. Borgogno, G. Albrand, “Surface contamination of bare substrates. Mapping of absorption and influence on deposited thin films,” in Optical Interference Coatings, F. Abelés, ed., Proc. SPIE2253, 982–992 (1994).
  20. M. Commandré, P. Roche, J. P. Borgogno, G. Albrand, “Absorption mapping for characterization of glass surfaces,” Appl. Opt. 34, 2372–2379 (1995). [CrossRef] [PubMed]
  21. M. Commandré, P. Roche, J. P. Borgogno, G. Albrand, “Effects of deposition conditions on thin film bulk and interface absorption,” in Optical Interference Coatings, F. Abelés, ed., Proc. SPIE2253, 1253–1262 (1994).
  22. P. Roche, M. Commandré, R. Mollenhauer, F. Flory, “Interpretation of measurements of both losses on guided propagation and absorption from a model of absorbing transition layers,” in Optical Interference Coatings, F. Abelés, ed., Proc. SPIE2253, 1286–1296 (1994).
  23. C. Amra, M. Ranier, C. Grézes-Besset, S. Maure, F. Cleva, R. Mollenhauer, G. Albrand, “Loss anomalies in multilayer planar waveguides,” in Optical Interference Coatings, F. Abelés, ed., Proc. SPIE2253, 1005–1020 (1994).
  24. E. Welsch, “Absorption measurements,” in Thin Films for Optical Coatings, R. E. Hummel, K. H. Guenther, eds. (CRC, Boca Raton, Fla., 1995), Chap. 9, pp. 243–272 and references therein.
  25. M. Commandré, P. Roche, “Characterisation of absorption by photothermal deflection,” in Thin Films for Optical Systems, F. Flory, ed. (Dekker, New York, 1995), Chap. 12, pp. 329–365.
  26. E. Abraham, J. M. Halley, “Some calculations of temperature profiles in thin films with laser heating,” Appl. Phys. A 42, 279–285 (1987). [CrossRef]
  27. G. Rousset, F. Charbonnier, F. Lepoutre, “Influence of radiative and convective transfers in a photothermal experiment,” J. Appl. Phys. 56, 2093–2096 (1984). [CrossRef]
  28. F. Flory, H. Rigneault, N. N. Maythaveekulchai, F. Zamkotsian, “Characterization by guided wave of instabilities of optical coatings submitted to high-power flux: thermal and third-order nonlinear properties of dielectric thin films,” Appl. Opt. 32, 28, 5628–5639 (1993). [CrossRef] [PubMed]
  29. J. Opsal, A. Rosencwaig, D. L. Willenborg, “Thermal wave detection and thin film thickness measurements with laser beam deflection,” Appl. Opt. 22, 3169–3176 (1983). [CrossRef] [PubMed]
  30. D. Ristau, J. Ebert, “Development of a thermographic laser calorimeter,” Appl. Opt. 25, 4571–4578 (1986). [CrossRef] [PubMed]
  31. D. L. Decker, L. G. Koshigoe, E. J. Ashley, “Thermal properties of optical thin film materials,” Nat. Bur. Stand. Spec. Publ. 727, 291–297 (1984).
  32. J. C. Lambropoulos, M. R. Joly, C. A. Amsden, S. E. Gilman, M. J. Sinicropi, D. Diakomihalis, S. D. Jacobs, “Thermal conductivity of dielectric thin films,” J. Appl. Phys. 66, 4230–4242 (1989). [CrossRef]
  33. V. Scheuer, C. Schuchert, T. Tschudi, “The influence of small amounts of impurities in sputtered laser mirrors on their performance,” in Thin Films in Optics, T. T. Tschudi, ed., Proc. SPIE1125, 54–60 (1990).
  34. P. Roche, E. Pelletier, “Characterisation of optical surfaces by measurement of scattering distribution,” Appl. Opt. 23, 3561–3566 (1984). [CrossRef] [PubMed]
  35. P. A. Temple, “Examination of laser damage sites of transparent surfaces and films using total internal reflection microscopy,” in Laser Induced Damage in Optical Materials: 1979, Nat. Bur. Stand. Spec. Publ.568, 333–341 (1979).
  36. F. L. Williams, C. K. Carniglia, B. J. Pond, W. K. Stowell, “Investigation of thin films using total internal reflection microscopy,” in Laser Induced Damage in Optical Materials: 1989, Nat. Inst. Stand. Technol. Spec. Publ.801, 299–308 (1989).
  37. R. C. Estier, N. S. Nogar, R. A. Schmell, “The detection, removal and effect on damage thresholds of cerium impurities on fused silica,” in Laser Induced Damage in Optical Materials: 1988, Nat. Inst. Stand. Technol. Spec. Publ.775, 183–188 (1988).
  38. T. Raj, D. E. McCready, C. K. Carniglia, “Substrate cleaning in vacuum by laser irradiation,” in Laser Induced Damage in Optical Materials: 1988, Nat. Inst. Stand. Technol. Spec. Publ.775, 152–165 (1988).
  39. R. S. Hockett, “Quantitative analysis of surface trace metal contamination on substrates and films by TXRF,” in Laser Induced Damage in Optical Materials: 1989, Nat. Inst. Stand. Technol. Spec. Publ.801, 239–253 (1989).
  40. Very smooth surface finish (French Standard NF S 10-006). The rms roughness is ~0.3 nm.
  41. H. K. Pulker, “Nature of a surface,” in Coating on Glass (Elsevier, New York, 1984), Chap 3, pp. 34–42.
  42. T. S. Izumitani, Optical Glass, American Institute of Physics Translation Series (American Institute of Physics, New York, 1986), Chap. 2, pp. 15–55.
  43. K. Kinosita, “Surface deterioration of optical glasses,” in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1965), Vol. 4, pp. 85–143. [CrossRef]
  44. P. Roche, M. Commandré, L. Escoubas, J. P. Borgogno, G. Albrand, B. Lazarides, “Substrate effects on absorption of coated surfaces,” Appl. Opt. 35, 5059–5066 (1996). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited