OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 35, Iss. 25 — Sep. 1, 1996
  • pp: 5073–5079

Microstructural, optical, and mechanical properties of reactive electron-beam-coevaporated TiO2–MgF2 composite films

Rung-Ywan Tsai and Mu-Yi Hua  »View Author Affiliations

Applied Optics, Vol. 35, Issue 25, pp. 5073-5079 (1996)

View Full Text Article

Enhanced HTML    Acrobat PDF (514 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The composition-dependent structural, microstructural, optical, and mechanical properties of TiO2–MgF2 composite films prepared by reactive electron-beam coevaporation at a substrate temperature of 280 °C are systematically investigated with an x-ray diffractometer, transmission electron microscope, spectrophotometer and varied angle of incidence spectroscopic ellipsometry, and microhardness tester, respectively. A comparison of the films prepared by reactive ion-assisted coevaporation shows that the films prepared by reactive electron-beam coevaporation have lower refractive indices and hardnesses. However, TiO2–MgF2 composite films prepared by both techniques exhibit similar softening and hardening phenomena and similar microstructures.

© 1996 Optical Society of America

Original Manuscript: November 20, 1995
Revised Manuscript: February 13, 1996
Published: September 1, 1996

Rung-Ywan Tsai and Mu-Yi Hua, "Microstructural, optical, and mechanical properties of reactive electron-beam-coevaporated TiO2–MgF2 composite films," Appl. Opt. 35, 5073-5079 (1996)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Jacobsson, J. O. Martensson, “Evaporated inhomogeneous thin films,” Appl. Opt. 5, 29–34 (1965). [CrossRef]
  2. R. Jacobsson, “Inhomogeneous and coevaporated homogeneous films for optical applications,” Phys. Thin Films 8, 51–98 (1975).
  3. B. Abeles, J. I. Gittleman, “Composite material films: optical properties and applications,” Appl. Opt. 15, 2328–2332 (1976). [CrossRef] [PubMed]
  4. D. M. Sanders, E. N. Farabaugh, W. K. Haller, “Glassy optical coatings by multisource evaporation,” in Thin Film Technologies and Special Applications, W. R. Hunter, ed., Proc. SPIE346, 31–38 (1982).
  5. W. J. Gunning, R. L. Hall, F. J. Woodberry, W. H. Southwell, N. S. Gluck, “Codeposition of continuous composition rugate filters,” Appl. Opt. 28, 2945–2948 (1989). [CrossRef] [PubMed]
  6. N. S. Gluck, H. Sankur, J. DeNatale, W. J. Gunning, “Microstructure and composition of composite SiO2/TiO2 thin films,” J. Appl. Phys. 69, 3037–3045 (1991). [CrossRef]
  7. S. Chao, C.-K. Chang, J.-S. Chen, “TiO2–SiO2 mixed films prepared by the fast alternating sputter method,” Appl. Opt. 30, 3233–3237 (1991). [CrossRef] [PubMed]
  8. R. Laird, A. Belkind, “Cosputtered films of mixed TiO2/SiO2,” J. Vac. Sci. Technol. A 10, 1908–1912 (1992). [CrossRef]
  9. R.-Y. Tsai, M.-Y. Hua, F. C. Ho, “Influences of the deposition rate on the microstructure and hardness of composite films prepared by reactive ion-assisted coevaporation,” Opt. Eng. 34, 3075–3082 (1995). [CrossRef]
  10. E. Ritter, “Dielectric film materials for optical applications,” Phys. Thin Films 8, 1–49 (1975).
  11. C. M. Kennemore, U. J. Gibson, “Ion beam processing for coating MgF2 onto ambient temperature substrates,” Appl. Opt. 23, 3608–3611 (1984). [CrossRef] [PubMed]
  12. P. J. Martin, R. P. Netterfield, “Ion-assisted deposition of magnesium fluoride films on substrates at ambient temperatures,” Appl. Opt. 24, 1732–1733 (1985). [CrossRef]
  13. K. Balasubramanian, X. F. Han, K. H. Guenther, “Comparative study of titanium dioxide thin films produced by electron-beam evaporation and by reactive low-voltage ion plating,” Appl. Opt. 32, 5594–5600 (1993). [CrossRef] [PubMed]
  14. W. C. Martyny, R. J. Olwert, “Electric lamp envelope having clear protective coating and method of making,” U.S. patent3,775,161 (27November1973).
  15. K. Memarzadeh, J. A. Woollam, A. Belkind, “Variable angle of incidence spectroscopic ellipsometric characterization of TiO2/Ag/TiO2 optical coatings,” J. Appl. Phys. 64, 3407–3410 (1988). [CrossRef]
  16. M. F. Doerner, W. D. Nix, “A method for interpreting the data from depth-sensing indentation instruments,” J. Mater. Res. 1, 601–609 (1986). [CrossRef]
  17. H. S. Coleman, A. F. Turner, O. A. Ullrich, “Crystal orientation and refractive index of thick evaporated MgF2 films,” J. Opt. Soc. Am. 37, 521 (1947).
  18. Inorganic File, Plate 6-290 (International Center for Diffraction Data, 1977).
  19. R.-Y. Tsai, M.-Y. Hua, C.-T. Wei, F. C. Ho, “Characterizations of composite TiO2–MgF2 films prepared by reactive ion-assisted coevaporation,” Opt. Eng. 33, 3411–3418 (1994). [CrossRef]
  20. D. E. Gray, ed., American Institute of Physics Handbook (McGraw-Hill, New York, 1972), pp. 6–50.
  21. J. M. Bennett, E. Pelletier, G. Albrand, J. P. Borgogno, B. Lazarides, C. K. Carniglia, R. A. Schmell, T. H. Allen, T. Tuttle-Hart, K. H. Guenther, A. Saxer, “Comparison of the properties of titanium dioxide films prepared by various techniques,” Appl. Opt. 28, 3303–3317 (1989). [CrossRef] [PubMed]
  22. T. Takagi, “Role of ions in ion-based film formation,” Thin Solid Films 92, 1–17 (1982). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited