OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 35, Iss. 25 — Sep. 1, 1996
  • pp: 5198–5201

Impact and vibration detection in composite materials by using intermodal interference in multimode optical fibers

Abdelrafik Malki, Rachid Gafsi, Laurent Michel, Michel Labarrère, and Pierre Lecoy  »View Author Affiliations


Applied Optics, Vol. 35, Issue 25, pp. 5198-5201 (1996)
http://dx.doi.org/10.1364/AO.35.005198


View Full Text Article

Enhanced HTML    Acrobat PDF (306 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An optical fiber sensor based on the intermodal interference principle is integrated in a composite material to detect impacts and vibrations. Six fibers are integrated at the top of a carbon/epoxy composite panel so as to form a grid into the structure. Spectral and temporal responses to impacts and acoustic vibrations of the sensor are compared with a piezoelectric accelerometer. The tests proved the facility of integration and the high sensitivity of the device. The location of impacts is performed with this arrangement by measuring the arrival times of the front waves to the fibers.

© 1996 Optical Society of America

History
Original Manuscript: January 2, 1996
Revised Manuscript: March 6, 1996
Published: September 1, 1996

Citation
Abdelrafik Malki, Rachid Gafsi, Laurent Michel, Michel Labarrère, and Pierre Lecoy, "Impact and vibration detection in composite materials by using intermodal interference in multimode optical fibers," Appl. Opt. 35, 5198-5201 (1996)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-35-25-5198


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. A. Greene, T. A. Tran, V. Bhatiat, M. F. Gunther, A. Wang, K. A. Murphy, R. O. Clauss, “Optical fiber sensing technique for impact detection in composites and metal specimens,” Smart Mater. Struct. 4, 93–99 (1995). [CrossRef]
  2. S. Kitade, T. Fukuda, K. Osaka, “Fiber optic method for detection of impact induced damage in composite plates,” J. Soc. Mater. Sci. 44, 1196–2000 (1995). [CrossRef]
  3. B. Noharet, J. Chazelas, P. Bonniau, J. Lecuellet, M. Turpin, “Impact detection on airborne multilayered structures,” in Smart Structures and Materials 1995: Smart Sensing, Processing, and Instrumentation, W. B. Spillman, ed., Proc. SPIE2444, 460–468 (1995).
  4. W. B. Spillmann, P. L. Fuhr, “Impact detection and location system for smart skins applications,” in Fiber Optic Smart Structures and Skins III, R. O. Claus, E. Udd, eds., Proc. SPIE1370, 908–915 (1990).
  5. P. L. Fuhr, “Single-fiber simultaneous vibration sensing and impact detection for large space structures,” Smart. Mater. Struct. 3, 124–128 (1994). [CrossRef]
  6. J. S. Sirkis, A. Daspugta, “The role of local interaction mechanics in fiber optic smart structures,” J. Intell. Mater. Syst. Struct. 4, 260–271 (1993). [CrossRef]
  7. J. S. Sirkis, “Unified approach to phase-strain-temperature models for smart structure interferometric optical fiber sensors: part 1, development,” Opt. Eng. 32, 752–761 (1993). [CrossRef]
  8. J. S. Sirkis, “Unified approach to phase-strain-temperature models for smart structure interferometric optical fiber sensors: part 2, applications,” Opt. Eng. 32, 762–773 (1993). [CrossRef]
  9. R. M. Measures, “Advances toward fiber optic based smart structures,” Opt. Eng. 31, 34–47 (1992). [CrossRef]
  10. H. Kiaoua, A. Maslouhi, C. Roy, “AE monitoring of free-edge delamination in graphite/epoxy laminates under fatigue loading,” J. Aéronaut. Spatial Can. 41, 21–27 (1995).
  11. J. Dakin, B. Culshaw, Optical Fiber Sensors: Principles and Components (Artech House, Boston, 1988), Chap. 2, p. 9
  12. B. Crosignani, B. Daino, P. Di Porto, “Interference of mode patterns in optical fibers,” Opt. Commun. 11, 178–179 (1974). [CrossRef]
  13. W. B. Spillman, B. R. Kline, L. B. Maurice, P. L. Fuhr, “Statistical-mode sensor for fiber optic vibration sensing uses,” Appl. Opt. 28, 3166–3176 (1989). [CrossRef] [PubMed]
  14. D. R. Huston, P. L. Fuhr, J.-G. Beliveau, W. B. Spillman, “Structural member vibration measurements using a fiber optic sensor,” J. Sound Vib. 149 (2), 348–353 (1991) [CrossRef]
  15. S. Wu, S. Yin, F. T. S. Yu, “Sensing with fiber speckle-grams,” Appl. Opt. 30, 4468–4470 (1991). [CrossRef] [PubMed]
  16. K. Pan, C.-M. Uang, F. Cheng, F. T. S. Yu, “Multimode fiber sensing by using mean-absolute speckle-intensity variation,” Appl. Opt. 33, 2095–2098 (1994). [CrossRef] [PubMed]
  17. F. T. S. Yu, J. Zhang, S. Yin, B. Ruffin, “Analysis of a specklegram sensor by using coupled-mode theory,” Appl. Opt. 34, 3018–3023 (1995). [CrossRef] [PubMed]
  18. D. Marcuse, Theory of Dielectric Optical Waveguides (Academic, New York, 1974), Chap. 3, p. 97.
  19. B. Culshaw, D. E. N. Davies, S. A. Kingsley, “Acoustic sensitivity of optical-fiber waveguides,” Electron. Lett. 13, 760–761 (1977). [CrossRef]
  20. R. A. Kline, Nondestructive Characterization of Composite Media (Technomic Publishing, Lancaster, Pa., 1992), Chap. 2, pp. 5–11; Chap. 5, pp. 41–65.
  21. W. Goldsmith, Impact (Edward Arnold, London, 1960), Chap. 2, pp. 30–34.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited