OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 35, Iss. 25 — Sep. 1, 1996
  • pp: 5202–5205

Fiber Bragg grating cryogenic temperature sensors

Sanjay Gupta, Toru Mizunami, Takashi Yamao, and Teruo Shimomura  »View Author Affiliations

Applied Optics, Vol. 35, Issue 25, pp. 5202-5205 (1996)

View Full Text Article

Enhanced HTML    Acrobat PDF (269 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Temperature sensing to as low as 80 K was demonstrated with 1.55-μm fiber Bragg gratings. The gratings were bonded on substrates to increase sensitivity, and a shift of the reflection wavelength was measured. The temperature sensitivity was 0.02 nm/K at 100 K when an aluminum substrate was used and 0.04 nm/K at 100 K when a poly(methyl methacrylate) substrate was used. These values are smaller than those at room temperature because of the nonlinearity of both the thermal expansion and the thermo-optic effect. Extension to the liquid helium temperature is also discussed.

© 1996 Optical Society of America

Original Manuscript: January 3, 1996
Revised Manuscript: March 25, 1996
Published: September 1, 1996

Sanjay Gupta, Toru Mizunami, Takashi Yamao, and Teruo Shimomura, "Fiber Bragg grating cryogenic temperature sensors," Appl. Opt. 35, 5202-5205 (1996)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Meltz, W. W. Morey, W. H. Glenn, “Formation of Bragg gratings in optical fibers by a transverse holographic method,” Opt. Lett. 14, 823–825 (1989). [CrossRef] [PubMed]
  2. W. W. Morey, G. Meltz, W. H. Glenn, “Fiber optic Bragg grating sensors,” in Fiber Optic and Laser Sensors VII, E. Udd, R. P. DePaula, eds., Proc. SPIE1169, 98–107 (1990).
  3. W. W. Morey, G. A. Ball, G. Meltz, “Photoinduced Bragg gratings in optical fibers,” Opt. Photon. News 5(2), 8–14 (1994). [CrossRef]
  4. J. D. Prohaska, E. Snitzer, B. Chen, M. H. Maher, E. G. Nawy, W. W. Morey, “Fiber optic Bragg grating strain sensor in large scale concrete structures,” in Fiber Optic Smart Structures and Skins V, R. O. Claus, R. S. Rogowski, eds., Proc. SPIE1798, 286–294 (1992).
  5. R. M. Measures, A. T. Alavie, R. Maaskant, M. Ohn, S. Karr, S. Huang, “Bragg grating structural sensing system. … for bridge monitoring,” in Distributed and Multiplexed Fiber Optic Sensors IV, A. D. Kersey, J. P. Dakin, eds., Proc. SPIE2294, 53–59 (1994).
  6. G. Meltz, W. W. Morey, “Bragg grating formation and germanosilicate fiber photosensitivity,” in Photoinduced Self-Organization Effects in Optical Fibers, F. Ouellette, ed., Proc. SPIE1516, 185–199 (1991).
  7. P. R. Forman, F. C. Jahoda, E. R. Aksay, “Fiber-optic temperature sensors for protective carbon tiles,” Rev. Sci. Instrum. 61, 2970–2972 (1990). [CrossRef]
  8. G. A. Ball, W. W. Morey, P. K. Cheo, “Single-point and multipoint fiber-laser sensors,” IEEE Photon. Tech. Lett. 5, 267–269 (1993). [CrossRef]
  9. G. P. Brady, S. Hope, A. B. Lobo Ribeiro, D. J. Webb, L. Reekie, J. L. Archambault, D. A. Jackson, “Demultiplexing of fiber Bragg grating temperature and strain sensors,” Opt. Commun. 111, 51–54 (1994). [CrossRef]
  10. G. K. White, “Thermal expansion of reference materials: copper, silica, and silicon,” J. Phys. D 6, 2070–2078 (1973). [CrossRef]
  11. A. Inoue, M. Shigehara, M. Ito, M. Inai, Y. Hattori, T. Mizunami, “Fabrication and application of fiber Bragg grating—a review,” Optoelectron. Dev. Technol. 10, 119–130 (1995).
  12. Verein Deutscher Ingenieure, ed., Lehrgangshandbuch Kryotechnik (Verein Deutscher Ingenieure, Berlin, 1977); Japanese translation, Teion Kogaku Handbook (Uchida Rokakuho, Tokyo, 1982), p. 200.
  13. R. M. Waxler, G. W. Cleek, “The effect of temperature and pressure on the refractive index of some oxide glasses,” J. Res. Natl. Bur. Stand. Sect. A 77, 755–763 (1973).
  14. S. Gupta, T. Mizunami, T. Shimomura, “Formation of photorefractive gratings in H2-loaded fibers,” in Proceedings of the Fifth Micro-Optics Conference (Japanese Society of Applied Physics, Hiroshima, 1995), pp. 168–171.
  15. P. J. Lemaire, R. M. Atkins, V. Mizrahi, W. A. Reed, “High pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2 doped optical fibers,” Electron. Lett. 29, 1191–1193 (1993). [CrossRef]
  16. K. Takagi, T. Mizunami, H. Okayama, S. Yang, “1/f noise in ceramic superconductors and granular resistors,” IEEE Trans. Components Hybrids Manuf. Technol. 13, 303–305 (1990). [CrossRef]
  17. G. G. Haselden, Cryogenic Fundamentals (Academic, New York, 1971), p. 352.
  18. H. N. Rourke, S. R. Baker, K. C. Byron, R. S. Baulcomb, S. M. Ojha, S. Clements, “Fabrication and characterization of long, narrowband fiber gratings by phase mask scanning,” Electron. Lett. 30, 1341–1342 (1994). [CrossRef]
  19. M. A. Davis, T. A. Berkoff, A. D. Kersey, “Demodulator for fiber optic Bragg grating sensors based on fiber wavelength division couplers,” in Smart Sensing, Processing, and Instrumentation, J. S. Sirkis, ed., Proc. SPIE2191, 86–93 (1994).
  20. A. D. Kersey, T. A. Berkoff, W. W. Morey, “High-resolution fiber-grating based strain sensor with interferometric wavelength-shift detection,” Electron. Lett. 28, 236–238 (1992). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited