OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 35, Iss. 27 — Sep. 20, 1996
  • pp: 5345–5347

Voltage breakdown follower avoids hard thermal constraints in a Geiger mode avalanche photodiode

Maurizio Viterbini, Sergio Nozzoli, Massimo Poli, Alberto Adriani, Francesco Nozzoli, Angelina Ottaviano, and Stefano Ponzo  »View Author Affiliations


Applied Optics, Vol. 35, Issue 27, pp. 5345-5347 (1996)
http://dx.doi.org/10.1364/AO.35.005345


View Full Text Article

Enhanced HTML    Acrobat PDF (231 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A novel approach to single-photon detection by means of an avalanche photodiode is described and preliminary results obtained by implementation of a prototype are reported. The electronic circuit (breakdown voltage follower) avoids the use of complex temperature controls typically used with these devices, thus reducing system complexity and cost. Data obtained without any thermoregulation show the same behavior with respect to systems thermoregulated to within a few hundredths of a degree celsius.

© 1996 Optical Society of America

History
Original Manuscript: November 27, 1995
Revised Manuscript: April 12, 1996
Published: September 20, 1996

Citation
Maurizio Viterbini, Sergio Nozzoli, Massimo Poli, Alberto Adriani, Francesco Nozzoli, Angelina Ottaviano, and Stefano Ponzo, "Voltage breakdown follower avoids hard thermal constraints in a Geiger mode avalanche photodiode," Appl. Opt. 35, 5345-5347 (1996)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-35-27-5345


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. E. Ingerson, R. J. Kearney, R. L. Coulter, “Photon counting with photodiodes,” Appl. Opt. 22, 2013–2018 (1983). [CrossRef] [PubMed]
  2. H. Dautet, P. Deschamps, B. Dion, A. D. MacGregor, D. MacSween, R. J. MacIntyre, C. Trottier, P. P. Webb, “Photon counting techniques with silicon avalanche photodiodes,” Appl. Opt. 32, 3894–3900 (1993). [PubMed]
  3. S. Barber, “Photon counting with avalanche photodiodes,” Electron. Eng.63–70 (May1984).
  4. RCA Electro Optics Silicon Avalanche Photodiode C30902E Data Sheet (RCA, Inc., Electro-Optics, Vandreuil, Quebec, Canada).
  5. R. G. W. Brown, K. D. Ridley, J. G. Rarity, “Characterization of silicon avalanche photodiodes for photon correlation measurements. 1: Passive quenching,” Appl. Opt. 25, 4122–4126 (1986). [CrossRef] [PubMed]
  6. R. G. W. Brown, R. Jones, K. D. Ridley, J. G. Rarity, “Characterization of silicon avalanche photodiodes for photon correlation measurements. 2: Active quenching,” Appl. Opt. 26, 2383–2389 (1987). [CrossRef] [PubMed]
  7. A. Lacaita, S. Cova, C. Samori, M. Ghioni, “Performance optimization of active quenching circuits for picosecond timing with single photon avalanche diodes,” Rev. Sci. Instrum. 66, 4289–4295 (1995). [CrossRef]
  8. A. Adriani, M. Viterbini, S. Centurioni, S. Miglianico, A. Morbidini, S. Nozzoli, R. Orfei, “Laser Backscatter Sonde (LABS): Sonda per misure da pallone sul materiale particolato atmosferico,” Technical Report, Consiglio Nazionale delle Ricerche, Istituto di Fisica dell'Atmosfera 95-4 (Istituto di Fisica dell'Atmosfera, Consiglio Nazionale dell'Atmosfera, August1995).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited