OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 35, Iss. 27 — Sep. 20, 1996
  • pp: 5357–5368

Intracavity CO laser photoacoustic trace gas detection: cyclic CH4, H2O and CO2 emission by cockroaches and scarab beetles

F. G. C. Bijnen, F. J. M. Harren, J. H. P. Hackstein, and J. Reuss  »View Author Affiliations


Applied Optics, Vol. 35, Issue 27, pp. 5357-5368 (1996)
http://dx.doi.org/10.1364/AO.35.005357


View Full Text Article

Enhanced HTML    Acrobat PDF (444 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A liquid-nitrogen-cooled CO laser and an intracavity resonant photoacoustic cell are employed to monitor trace gases. The setup was designed to monitor trace gas emissions of biological samples on line. The arrangement offers the possibility to measure gases at the 109 by volume (ppbv) level (e.g., CH4, H2O) and to detect rapid changes in trace gas emission. A detection limit of 1 ppbv for CH4 in N2 equivalent to a minimal detectable absorption of 3 × 10−9 cm−1 can be achieved. Because of the kinetic cooling effect we lowered the detection limit for CH4 in air is decreased to 10 ppbv. We used the instrument in a first application to measure the CH4 and H2O emission of individual cockroaches and scarab beetles. These emissions could be correlated with CO2 emissions that were recorded simultaneously with an infrared gas analyzer. Characteristic breathing patterns of the insects could be observed; unexpectedly methane was also found to be released.

© 1996 Optical Society of America

History
Original Manuscript: October 10, 1995
Revised Manuscript: April 3, 1996
Published: September 20, 1996

Citation
F. G. C. Bijnen, F. J. M. Harren, J. H. P. Hackstein, and J. Reuss, "Intracavity CO laser photoacoustic trace gas detection: cyclic CH4, H2O and CO2 emission by cockroaches and scarab beetles," Appl. Opt. 35, 5357-5368 (1996)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-35-27-5357


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. L. Meyer, M. W. Sigrist, “Atmospheric pollution monitoring using CO2 laser photoacoustic spectroscopy and other techniques,” Rev. Sci. Instrum. 61, 1779–1807 (1990). [CrossRef]
  2. L. B. Kreuzer, “Ultralow gas concentration infrared absorption spectroscopy,” J. Appl. Phys. 42, 2934–2943 (1971). [CrossRef]
  3. M. Fiedler, C. Golz, U. Platt, “Nonresonant photoacoustic monitoring of atmospheric methane,” in Optical Methods in Atmospheric Chemistry, H. I. Schiff, U. Platt, eds., Proc. SPIE1715, 212–221 (1992).
  4. T. H. Vansteenkiste, F. R. Faxvog, D. M. Roessler, “Photoacoustic measurement of carbon monoxide using a semiconductor diode laser,” Appl. Spectrosc. 35, 194–196 (1981). [CrossRef]
  5. S. B. Tilden, M. B. Denton, “A comparison of data reduction techniques for line-excited optoacoustic analysis of mixtures,” Appl. Spectrosc. 39, 1017–1022 (1985). [CrossRef]
  6. T. X. Lin, W. Rohrbeck, W. Urban, “Long wavelength operation of a CW CO-laser up to 8.18 μm,” Appl. Phys. B 26, 73–76 (1981). [CrossRef]
  7. T. George, S. Saupe, M. H. Wappelhorst, W. Urban, “The CO fundamental-band laser as secondary frequency standard at 5 μm,” Appl. Phys. B 59, 159–166 (1994). [CrossRef]
  8. B. Wu, T. George, M. Schneider, W. Urban, B. Nelles, “Development of a new CW single line CO laser on the υ′ = 1 → υ″ = 0 band,” Appl. Phys. B 52, 163–167 (1991). [CrossRef]
  9. W. Urban, “Infrared lasers for spectroscopy,” in Frontiers of Laser Spectroscopy of Gases, A. C. P. Alves, J. M. Brown, M. Hollas, eds. (Kluwer, Deventer, The Netherlands, 1988), pp. 9–42. [CrossRef]
  10. S. Bernegger, M. W. Sigrist, “CO-laser photoacoustic spectroscopy of gases and vapors for trace gas analysis,” Infrared Phys. 30, 375–429 (1990). [CrossRef]
  11. F. G. C. Bijnen, T. Brugman, F. J. M. Harren, J. Reuss, “A liquid nitrogen cooled CO laser in a photoacoustic setup monitors low gas concentrations,” in Photoacoustic and Photothermal Phenomena III, D. D. Bicanic, ed. (Springer-Verlag, Heidelberg, 1992), pp. 34–37.
  12. J. E. Rogers, W. B. Whitman, Microbial Production and Consumption of Greenhouse Gases (American Society for Microbiology, Washington, D.C., 1991), pp. 7–38.
  13. J. H. P. Hackstein, C. K. Stumm, “Methane production in terrestrial arthropods,” Proc. Natl. Acad. Sci. U.S.A. 91, 5441–5445 (1994). [CrossRef] [PubMed]
  14. P. Kestler, “Respiration and respiratory water loss,” in Environmental Physiology and Biochemistry in Insects, K. H. Hoffmann, ed. (Springer-Verlag, Berlin, 1985), pp. 137–183.
  15. M. C. Quinlan, N. F. Hadley, “New system for concurrent measurement of respiration and water loss in arthropods,” J. Exp. Zool. 222, 255–263 (1982). [CrossRef]
  16. J. R. B. Lighton, D. Garrigan, F. D. Duncan, R. A. Johnson, “Respiratory water loss during discontinuous ventilation in queens of the harvester ant Pogonomyrmex rugosus,” J. Exp. Biol. 179, 233–244 (1993).
  17. E. B. Edney, Water Balance in Land Arthropods (Springer-Verlag, New York, 1977). [CrossRef]
  18. C. E. Treanor, J. W. Rich, R. G. Rehm, “Vibrational relaxation of anharmonic oscillators with exchange-dominated collisions,” J. Chem. Phys. 48, 1798–1807 (1968). [CrossRef]
  19. J. W. Rich, “Kinetic modeling of the high-power carbon monoxide laser,” J. Appl. Phys. 42, 2719–2730 (1972). [CrossRef]
  20. G. A. Murray, A. L. S. Smith, “Plasma kinetic effects of the addition of oxygen to CO laser discharges,” J. Phys. D 14, 1745–1756 (1981). [CrossRef]
  21. F. J. M. Harren, J. Reuss, E. J. Woltering, D. D. Bicanic, “Photoacoustic measurements of agriculturally interesting gases; detection of C2H4 below the ppb level,” Appl. Spectrosc. 44, 1360–1368 (1990). [CrossRef]
  22. F. G. C. Bijnen, “Refined CO laser photoacoustic trace gas detection; observation of anaerobic processes in insects, soil and fruit,” Ph.D. dissertation (University of Nijmegen, Nijmegen, The Netherlands, 1995).
  23. F. G. C. Bijnen, F. J. M. Harren, J. Reuss, “Geometrical optimization of a longitudinal resonant photoacoustic cell; sensitive and fast trace gas detection with applications on gas emission from tomatoes,” Rev. Sci. Instrum. 67 (July1996). [CrossRef]
  24. F. G. Gebhardt, D. C. Smith, “Kinetic cooling of a gas by absorption of CO2 laser radiation,” Appl. Phys. Lett. 20, 129–132 (1972). [CrossRef]
  25. R. A. Rooth, A. J. L. Verhage, L. W. Wouters, “Photoacous-tic measurement of ammonia in the atmosphere: influence of water vapor and carbon dioxide,” Appl. Opt. 29, 3643–3653 (1990). [CrossRef] [PubMed]
  26. E. Avramides, T. F. Hunter, “Vibrational–translational/ rotational and vibrational–vibrational processes in methane: optoacoustic measurements,” Chem. Phys. 57, 441–451 (1981). [CrossRef]
  27. J. D. Lambert, Vibrational and Rotational Relaxation in Gases (Clarendon, Oxford, 1977).
  28. C. M. Harris, ed., in Handbook of Noise Control (McGraw-Hill, New York, 1957), Chap. 21.
  29. A. Krogh, “Studien über Tracheenrespiration. II. Uber Gasdiffusion in den Tracheen,” Pfluegers Arch. Gesamte Physiol. Manschen Tiere 179, 95–112 (1920). [CrossRef]
  30. E. H. Hazelhoff, “Regeling der ademhaling bij insecten en spinnen,” Ph.D. dissertation (State University Utrecht, Utrecht, The Netherlands, 1926).
  31. A. Punt, W. J. Parser, J. Kuchlein, “Oxygen uptake in insects with cyclic CO2 release,” Biol. Bull. Woods Hole, Mass. 112, 108–119 (1957). [CrossRef]
  32. R. I. Levy, H. A. Schneiderman, “Discontinuous respiration in insects IV. Changes in intratracheal pressure during the respiratory cycle of silkworm pupae,” J. Insect Physiol. 12, 465–492 (1966). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited